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Abstract

A relatively high level analytical model for com-
puter systems serving both batch and interactive users
is presented. The model is unusual in its employment
of an endogenous priority scheme to represent a class
of strategies for controlling service to the two types of
customers. Numerical methods developed by V, L.
Wallace are used to generate steady state probability
distributions for the infinite state Markov chain formed
by the model, Data from the Michigan Terminal Sys-
tem, which includes a load controlling mechanism of
the type modelled, is used to validate the model.
Finally, additional parameter studies indicate that the

model reflects the dynamic behavior of such system

in a reasonable way.
INTRODUCTION

An increasing number of computer systems pro-
vide both batch and interactive service to their users.
In such systems, conflicts may arise between the two
modes of service, since jobs of both types compete for
the same set of resources. In particular, if the batch
load is substantial, it can cause response times for
interactive jobs to become intolerable, This effec~
tively reduces the interactive-batch system to a batch-
only one unless some control is placed on the load
imposed by the batch subsystem., Conversely, if jobs
in the interactive subsystem are given absolute prior-
ity, turnaround for batch jobs may become unaccept-

ably high.
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From the operating system's point of view, it
is desirable that all jobs actually competing for the
processor be treated equally, regardless of whether
the computing request was initiated from an interactive
terminal or a card reader. The actual resource
requirements of jobs at a particular time provide a
better basis for discriminating among them than their
sources, since, for example, a heavily compute bound
(or I/0 bound) request may be initiated either inter-
actively or via the batch stream. Nonetheless, it must
be recognized that admitting a single additional batch
job into competition for the processor will generally
load the system much more heavily than admitting an
additional interactive job: for the batch job, '"think
times' will be zero and input/output times will gener-
ally be shorter than for the interactive job. Moore (13)
found that the load imposed by a single batch job was
roughly equivalent to that of 5 to 15 terminal jobs.
These points suggest that a reasonable way to balance
service between interactive and batch jobs is to control
the entry of jobs into the race for the processor at
least partially on the basis of the source of the job as

well as on the current level of performance of the sys-

tem,

In some respects this type of control algorithm
corresponds to manipulating the degree of multipro-
gramming in order to keep the system from becoming
saturated, Previous work directed toward this end is
primarily represented by the development of the work-
ing set policy (5, 6, 7) in which the degree of multi-

programming at a given time is controlled by the size



of the balance set, that is, the set of jobs all of whose
working sets will fit into real memory at a given time.
Although a number of approximations to working set
replacement policies have been implemented (8, 14, 16),
currently available hardware makes precise measure-
ments of working set size difficult, More recently, an
analytical model which includes a control switch to
regulate the degree of multiprogramming has been de-
veloped (3, 4) and extended to include an adaptive con-
trol (1), This extended version was simulated, but no
additional analytic results were presented. Both the
working set and control switch models, however, allow
only one class of jobs and both contain more low level

system detail than the model investigated below.

This paper presents a Markovian queueing model
which-allows two types of arrivals, representing batch
and interactive jobs. The server discipline reflects a
control algorithm such that good response to interactive
requests is maintained while a minimal level of batch
throughput is ensured. There is a strong emphasis on
keeping the model simple and general, for purposes of
wider applicability (10). Parameter values obtained
from the Michigan Terminal System are used to conduct
studies with the model, and the results of the studies

are compared with actual system measurements.

STRUCTURE OF THE MODEL

The primary goal of this model is to represent a
control algorithm for admitting jobs of two different
types into the race for the processor, so the actual
processor scheduling algorithm (that is, the algorithm
for sharing the processor among the jobs which have
been allowed to compete for it) will not be presented
in detail, Admission of a job to the server in this
model could thus correspond to the entrance of the job
into the ready list of a more detailed model, All of
processing that takes place on a job after it enters the
rcady list will be represented here by a simple expon-
entially distributed service time. Since the control
algorithm we will be concerned with generally maintains

terminal response at the expense of batch turnaround

time, the statistics of primary interest are the mean
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system residence time and queue length for batch jobs,
Consequently, the assumption of a single server with
service expontential for each job should not bias results

unrealistically,

The basic structure of the model is shown in Fig-
ure 1. A finite capacity queue is used to represent the
current number of terminals active in the system; the
capacity of the queue can be thought of as corresponding
to the (finite) number of input ports which the system
supports. An infinite capacity queue is used to model
batch jobs waiting for service. Since there are two
queues and only one server, an algorithm is required to
define from which queue the server chooses the next job
to be serviced. In most queueing models, priorities are
defined strictly by the type of the job (9): for example,
all interactive jobs are serviced before all batch jobs,
or vice versa, This type of priority discipline is called
exogenous, since the order of service is defined strictly
by the externally defined priorities of the jobs. The
discipline used in this model, however, will be endogen-
ous: the next job to be serviced will be determined on
the basis of the state of the server, the lengths of the

two queues, and a specified decision algorithm.

The server state is defined to be the number of
consecutive interactive jobs which have been serviced
(up to a finite limit, L-1), Thus, at each service
completion the server is in one of L possible states, and
jobs in the interactive terminal queue and

5)

there are nT

nB jobs in the batch queue. T,nB’
(where S denotes the server state) defines the state of

The triple (n
the entire system at a departure epoch, If we introduce
the additional assumptions of Poisson arrivals to each
and exponential service

queue with. rates A and AB

times with rates Hop and Fp for terminal and batch
jobs, respectively, then the model defines an infinite

state Markov chain,

In order to complete the specification of the model,
the transition function among states must be defined.

Transitions due to job arrivals are specified as:

batch arrival: (nT, nB, S)+ (n +1, S)

"B



interactive
terminal

arrival: (n,,, nB, S) + (min (n M), n_, S)

T T+1’ B’

where M is the capacity
of the terminal queue
If an arrival to the terminal queue occurs when M ter-
minal jobs are already waiting, that arrival is lost.
State transitions at departures are more complicated
to specify, since when a service completion occurs,
the decision algorithm must be used to determine
whether a terminal or batch job will be chosen for
service., We will now define this algorithm and indicate

the motivation for it.

Associated with each server state S, there is a
breakpoint bs. The first breakpoint, bo, is defined to
be zero, and the last, bL—l has the value +oo, The
sequence of breakpoint values is expected to be non-
decreasing, although this is not a requirement, Ata
service completion, the server obeys the following

algorithm:

1. If both queues are non-empty and the server
is in state S, then
a, If nszS, select the next job to be
serviced from the interactive terminal
queue and set S+S +1,

state is (nT-l,

(The next

, min (8+1, L -1)),
nB min (S 1))

b. If nT<bS, choose the next job from
the batch queue and set S0,
0) ).

(The

next state is (nT, nB—l’

2, If only the terminal queue is non-empty,
choose a job from it and set S<min
(S+1, L -1),

(The next state is (n y 0,

T-1
min (8 +1L,L-1)).

3. If only the batch queue is non-empty, choose a
job from it and set S<0.

(0 ) 1

(The next state is

» gy O

4, If both queues are empty, set S+0 and enter
a distinguished idle state until the next arrival.
At the time of the arrival, reapply this algor-
ithm,
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The motivation for this scheme is the requirement
that the batch stream receive varying degrees of service
depending on the size of the terminal load at a given
time. A minimum level of service for the batch stream
is guaranteed by the fact that, even under saturated
conditions, one batch job will be processed for every
L - 1 terminal jobs (since bL_1=‘<><). The effect of the
breakpoint vector and priority algorithms is to repre-
sent the server as querying and responding to the system
state after each departure: if S terminals have been
serviced in a row and the terminal queue still equals or
exceeds bs, the current breakpoint, (i.e., the terminal
queue is "too long') service another terminal and incre-
ment S, Otherwise, service a batch job and reset S to
zero, indicating that a batch job has entered service, A
policy under this algorithm corresponds to fixing the
number of server states,

L, and the values of the

breakpoihts bo, b b By changing the policy

s eeoes .
used, different cintrol algf;rgthms may be modelled,

In (10) the numerical techniques developed by
Wallace (17) are shown to be applicable to the determi-
nation of the steady state probability distribution of the
model. The mean queue lengths for batch and terminal
jobs can be determined from this distribution, and by
applying Little's theorem (12) the mean system resi-
dence times can also be defined, The derivations of
these results are omitted for the sake of brevity, A
program has been written incorporating these techniques
and this program was used to generate the results given

below.

BEHAVIOR OF THE MODEL UNDER TERMINAL
SATURATION

If it is assumed that the terminal queue is always
full and that the batch load is fairly heavy (i.e., the
batch queue is rarely empty), then the Pollaczek-
Khintchine theorem for the M/G/1 queue may be applied
to find the mean "worst case' batch turnaround time.
Under these assumptions, a random variable can be
constructed to represent the effective batch service
time: this variable will be the sum of L exponential

random variables (r.v.) of parameter /.LT (the terminal



services) and one exponential r,v. of parameter /-LB.

The Laplace transform of the batch effective ser-
vice time density is then given by:
L
br kg

f*(s) = (B, 79 ()

The first two moments of this density are then

5O g g
2 2 2
o, Hp LM + (L)
HE) = (. #)?
B T

Applying the Pollaczek-Khintchine theorem, the mean

gsystem residence time for a batch job is given by

2 2
1/ Ag (Mg LT+ (Lity +Hy)

2
)

EWp =ty *

APPLICATION OF THE MODEL TO THE MICHIGAN
TERMINAL SYSTEM

In order to assess the usefulness of this relatively
general, high-level model, it has been used to repre-
sent the Michigan Terminal System, This large scale
interactive and batch system, which has been imple-
mented on the IBM 360/67 and 370/168, is described in
(2, 10, 13, 15), It includes a load leveling algorithm
which controls the number of batch streams (batch job
initiators) on the basis of current system performance,
Measurements of CPU activity, paging activity, and
disk and channel 1/0 activity are combined in a weight-
ed sum which defines a current load factor for the sys-
tem. This load factor is combined with weighted values
of the last several load factors computed to provide
exponential smoothing of the final load factor, The
system decides, on the basis of this final load factor,
whether to increase, decrease, or leave unchanged
the number of batch initiators. (In fact; the algorithm
is more complex than this, since batch initiators are
not all identical: each initiator looks for a certain
class of batch jobs to initiate, based on execution time

estimates).

Statistics from 15 different periods, ranging from
three to eight hours in length, were gathered in order to
determine reasonable values for arrival and service

rate parameters in the model and to provide a yardstick

Z#T AuB (ﬂT ﬂB _)‘B(L”B + #T))
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for the model's predictions. Details of the collection
methods and values observed can be found in (10, 11)
and will not be repeated here, We note that system

behavior seemed to fall into three general categories,

defined by mean CPU utilization and batch queue length:

. Lightly loaded: 0% < CPU <60 %; Batch Queue = 0

=

. Moderately loaded: 60%< CPU< 90%; 0<Batch

DN

'Queue <5
3. Heavily loaded: 90% <CPU; Batch Queue >5
For each of the 15 measurement periods, the

arrival and service rates of batch and terminal jobs
were determined. Service rates were based on observ-
ed job CPU requirements only, since the system being
measured was in fact generally CPU-limited, The
values for M (capacity of the terminal queue), L
(number of server states), and the breakpoints were
determined on the basis of preliminary studies., Since
the cost of computing the analytic solution is propor-
tional to the product of M and L, there was a strong
motivation to keep these two model parameters as
small as possible without introducing too much error
into the results,

in Table 1.

The values finally chosen are shown
For the heavily loaded periods, L =4 and
M = 10 were chosen, and a reduction to M =5 for the

lightly loaded periods proved to yield sufficiently

accurate results.

The values predicted by the model for the mean
and the standard deviation of the batch queue length are

shown in Table 2, next to the observed values.

Since the analytical results for percent non-idle
CPU depend only on the arrival and service rates
(which were derived from the data) the close agreement
between model and data for this parameter indicates
that the finite length of the terminal queue in the model
did not seriously bias the results. The mean batch
queue lengths predicted by the analysis show the same
trends as the observed values, although they tend to
underestimate them., Figures 2, 3, and 4 detail the
cor_respondence between the predicted and observed
values, In Figure 2, arrows point from predicted to

observed values, When CPU utilization is below 90%,



the absolute error is not large, although there is a con-
sistent underestimate of batch queue lengths in the pre-
dictions, In the lightly loaded periods, this tendency to
uqderestimate is due in part to the single server as-
sumption. Since the statistics were in fact collected
from a dual-processor system, the single server in the
model is defined to ﬁave twice the service rate of the
actual CPU's. In lightly loaded periods, the actual
system will have only one CPU busy, which will have a

service rate half that of the model.

When the CPU utilization is above 90%, the ob-
served data become much more difficult to predict, and
the values projected by the model vary in both directions
from observed statistics. Figure 3 shows the data
points with error bars indicating distances of one stan-
dard deviation in each direction from the observed
means. From this point it is clear both that the pre-
dicted means all fall within one standard deviation of the
observed means and that the standard deviations ob-
served, especially in the heavily loaded regions, are

quite large.

Two explanations are possible for these observa-
tions. First, the mean batch queue length may not be
describable as a simple function of the CPU utilization,
This is particularly true when the load is heavy, since
other bottlenecks may appear in the system., In this
case, the mean batch queue length may increase while
CPU utilization stays fixed. Secondly, when the system
is heavily loaded, the basic existence of a steady state
distribution is called info question. A look at the actual
structure of MTS heavy periods indicates that they are
often characterized by a rising demand for interactive
terminal service for several hours, during which time
the batch queue grows in length, followed by a decrease
in terminal use (around dinner time, for example.) As
the arrival rate of terminal jobs declines, the batch
queue is processed more quickly by the system, so the
CPU utilization remains high until the batch queue is
depleted, Thus, the heavily loaded periods may be

dominated by several transient processes.
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Finally, Figure 4 contrasts a smooth curve which
fits the predicted data values with a jagged line produced
by connecting the data points defined by the system
measurements, Despite the difference in detail, the
model does reflect the global characteristics of the

system.,

ADDITIONAL PARAMETER STUDIES

After validating the model, several parameter
studies were made to relate the expected system resid-
ence time (turnaround) for batch jobs to the arrival
rates for batch and terminal jobs. The mean system
residence time for batch jobs (E(WB)) can be obtained
from the mean number in system via Little's Theorem
(i = )\—). In each case, arrival and service rates were
first determined from system statistics and the arrival
rate for batch jobs was then varied, Statistics chosen
for these studies included two light, three moderate,

and two heavy periods.

Figure 5 shows the results of these studies, This
graph discloses a sharp division of the system's perfor-
mance into two apparent regions of operation, The
first region, illustrated by the three steeply rising
curves, corresponds to periods in which E(WB) is very
sengitive to changes in batch arrival rate, This sensi-
tivity is due to the relatively heavy interactive load on
the system; so that if the batch arrival rate is increased,
the queue lengths (and hence residence times) grow
rapidly. Conversely, in those cases in which E(WB) is
relatively insensitive to the batch arrival rate, the
interactive load is light and the system, as a whole, is
underloaded. At such times, additional batch arrivals

can be handled with only a small increase in E(WB).

1t is also noteworthy that those cases originally
classified as moderate periods fall in both regions of
operation, indicating that the initial division of system
states into three categories is finer than required, The
resulting division of the operating region of the system
into "good turnaround' and "bad turnaround' regions
has considerable intuitive appeal, since MTS batch
users often observe that turnaround is either very short

(a few minutes) or else relatively long (an hour or more),



This bifurcation of the operating region suggests
that, if similar studies were run in which the terminal,
rather than batch, arrival rate were varied and E(WB)
observed as a function of this variation, the resulting
polt would contain a knee, The knee would correspond
to that point at which terminal service would begin to
saturate the system; batch waiting times would rise
rapidly beyond this point, because of the priority placed

on terminal service.

Two such studies were made, one corresponding to
alightly loaded period during which the terminal arrival
rate was gradually increased, and the other using data
from a heavily loaded period, successively decreasing
the terminal arrival rate, The reéults of these studies
are shown in Figure 6. In both cases, the curve for
E(WB) begins to rise sharply as the arrival rate be-
comes greater than . 030 jobs per second. Since only
the control algorithm was specified in the design of the
model, this result demonstrates the model's ability to

realistically reflect the system's behavior.
CONCLUSION

That the model developed here is capable of re-
presenting computer systems which include algorithms
for controlling service delivered to batch and inter-
active users has been demonstrated by the validation
and parameter studies. This has been shown to be
true despite the model's relatively high level and the
numerous assﬁmptions made to ensure its mathema-
tical tractability, Although the primary control
algorithms portrayed in the model design are those
which favor terminal service over batch as the inter-
active load increases, the model can easily be adapted
to represent other priority schemes. Finally, the endog-
enous priority mechanism presented here can be used to
study those lower level portions of computing hardware
where more than one class of requests is served but
priorities are not determined solely as a function of the

request class.
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Data Max
From £Term
Pericd (M)
1 5
2 5
3 5
4 5
5 5
6 5
7 S
10
& 5
9 5
10
10 5
19
11 10
12 10
13 10
14 10
15 10

Collection

Table 1.

4

‘T B
01063  .02465
.01014 .02063
.01509 .03028
.02319 .03%42
L02633  .04994
.03269 .06769

L0376 .03522

.04926 .03111

.04324 .04056

.04833 .0382¢

.04565 .03426
.049C6  ,04778
.04517  ,03772
.04552 .03622

.04544 .03528

For all cascs

L =4

Breakpoints

Peri

10
11
12
13
14
15

od

= 1,2,3,=°

.C7524
.05739
06717
.05890
<11210
.1085

.08522

09279

.07724

.11354

.08602
.08846
.08848
.08509

.07779

Parametor

.09284
.11962
.08e50
.08081

.08594

Studies

Single MNecde Model

Summary of Parameter Studies

E(WB)
8.4
11.3
18.2
30.8
18.8

23.9

184.8
290.1

180.7
368.4
280.5
911.1

1173.5

%
non-
idle
26.2
29.6
45.5

59.8

94.4
97.8

98.6

E(LB)
.206

.233

Table 2. Analytic Model-System Data Comparison

$ CPU
Non=-idle
Data Model
26.31 26.2
29.52 29.6
48.90 45.5
60.33 59.8
57.36 57.1
66.91 66.9
79.1 77.4
80.51 78.2
91,95 91.8
93,95 93.9
90.02 89.7
95,32 95.1
94,67 94.4
98.30 97.8

99.43 98.6

Hean

Batch Q
Data Model

.37
.40

10.34
19.4
25.8
27.3
50.1

13.8

4 .206
5 .233

3 .552

Analytic Model - System Data

Comparison

‘8td. Dev.
Batch Q
Data Model
.65 .53
.63 .59
1.23 1.02
3.68 1.95
1.88 1.47
3.51 Z.39
5.64 3.26
1.76 2.35
9.46 12.3
8.84 12.2
16.1 7.73
14.4 i8.8
26.0 15.1
37.8 32.0
9.6 38.9

5td.
Dev,

.53

38.9



Single Node Model Structure

Interactive Jobs AT-—————a{EEPF

Batch Jobs AB —_— w}» “B’

UT
S—

/

Batch Queue - infinite capacity

Maximum # terminals in system = M

Single Server, which has a state associated

with it:
State Meaning
idle no jobs
0 serving
1 serving
2 serving
L-1 serving

System State: (T,B,S)

in system
batch job
1st consecutive terminal
2nd consecutive terminal

L-1st consecutive terminal

Figure 1. Single Host Model

290



et e e X,

50 3
X = data
45 |—
o = model
[»
40 —
35 (—
[
Mean .
Batch
Queue "
Length 4
Error Vectors
20 — f
15 |— il
& X
fo
10 — X
8_._.
6____ o
4 3}
2| 3
¥ Oy
| 5 4o I o °§ M| 1 I
10 20 30 40 50 60 70 80 90 100

$ Non-idle CPU

Figure 2. Model Vs, Data - Error Vectors

291



50 ‘1
X = data

© = model

Mean —
Batch
Qucue
Length

Std. Deviations

20 — x

10 —

~N > o [--]
[
| 00 o
o

L 48 1 ok l‘ﬂ il
10 20 30 40 50 6o+ 70 lso 90 100
% Non—idle CpPU

Figure 3. Model vs, Data - Standard Deviations
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