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SOFTWARE ENGINEERING TECHNIQUES APPLIED TO

PROTOCOL SIMULATION

INTRODUCTION

Simulation remains an important tool for studying the performance of complex
systems. Over the past few years, there has been significant progress in the application of
statistical techniques to the analysis of simulation results [1-4] . Techniques used in the
construction of simulation programs have received less attention, except in the sense that
software engineering methods are supposed to apply to the construction of programs in
general. This paper reports experiences gained in applying certain software engineering
techniques to the construction of a simulator of satellite communication protocols.

Simulation provides a good test case for software engineering concepts in that simula-
tions often require (a) the use of concurrent processes, (b) the modeling of a complex system
through abstraction, (c) the validation of the program against vague requirements, (d) the
modification of the program to model alternative systems or configurations, and (e) the
achievement of reasonable CPU and storage efficiency to allow sufficient replications of
experiments for statistically meaningful results. In this project, we applied the following
software engineering techniques:

* Complete design prior to coding [5]

* Design review by knowledgeable outsiders [6]

* Use of the information hiding principle in design [7]

* Use of abstract types [8]

* Code reading by other than the coder prior to testing [9]

* Use of co-operating sequential processes [10]

* Use of pseudo-code [11]

The results observed from the use of these techniques were generally favorable, although
some proved of greater benefit than others.

DESIGNING THE SIMULATOR

The first step in the design was to survey and document the requirements for the
simulation and the environment to be simulated. The general goal for the project was to

Manuscript submitted December 10, 1979.
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evaluate the performance of alternative channel management algorithms for broadcast
satellite UHF channels. Thus, the basic requirement for the simulator was that it accurately
model the relevant characteristics of this type of channel and provide a structure in which
different communications protocols could be tested. Paragraphs were written describing the
primary aspects of the real world that would affect the performance of protocols in the
communications systems of interest. A secondary set of requirements that would allow
modeling of more general systems (e.g., point-to-point networks, networks including voice
links) was also developed. The primary list of requirements was viewed as mandatory, the
secondary as desirable - extensions of the initial simulator were to allow their inclusion,
if possible. Brief descriptions of three protocols were included to provide examples of the
operations that would have to be modelled by the simulator. Finally, the measurements
that might be needed from the simulator were discussed.

Following the identification of requirements, a design was proposed. Since the charac-
teristics of traffic to be transmitted over the channel (arrival rates, sources, destinations,
priorities, message lengths) were unspecified in general, the design had to provide a flexible
way to specify them. A goal for the design was that changes in these characteristics should
only require parameter changes in the simulator, not coding changes. With respect to testing
different protocols in the simulator, coding changes were to be expected; the goal was to
limit them to the protocol module. Changes in measurements recorded were expected to
require changes to code; a goal was that these changes should be minimized and localized
with respect to each variable, and that code for the generation of reports should be un-
affected by changes in the variables actually measured.

The initial design was specified informally (i.e., in English) as a set of functions
grouped into modules based on the principle of information hiding [7], so that each module
keeps one or more "secrets" from the other modules. The design also defined a structure
for processes to model the activities occurring in a real communications system - message
generation, transmission, and reception. Processes were defined on the basis of sequentially
predictable activities: actions that could occur simultaneously in the real world (e.g., crea-
tion of one message and transmission of another) were modeled by separate processes.
Pseudo-code for some example processes was included in the design. This code consisted of
function invocations embedded in ALGOL-like control structures.

The design document also included a table listing system characteristics likely to be
changed in experiments (such as traffic distributions, communications equipment, statistics
collected, channel error characteristics) cross referenced with the proposed simulation
modules. At the intersection of each module (row) and experimental variable (column),
an indication was given as to whether a change in the variable would require no change, a
parameter change, or a coding change in the corresponding module. This table provided a
convenient way to check that the modularization chosen was appropriate according to the
information hiding principle.

The system requirements and the proposed design were both described in a 20-page
technical memorandum [12] and circulated to three interested observers for a thorough
review. Keeping the documents together allowed reviewers to judge the design in relation
to the requirements. The results of these reviews were incorporated into the design memo
and redistributed; the revised memorandum served as the basic document guiding the
implementation. Differences between the initial and final designs derived principally from a

2



NRL REPORT 8385

sharpening of the concepts of process, function, and module. The revised document in-
cluded definitions of these terms and omitted one synchronization process that had been
present in the initial design. This process was found not to represent a real world activity.

The final design consisted of two major parts: (a) the User Interface and Simulator
Control, which controlled a given simulation run, providing check pointing and restarting
facilities, parameter input/output, report generation, and initialization, and (b) the Com-
munications System Simulator, which actually simulated the given system.

The Communications System Simulator included two types of processes: Message
Generation Processes (MGPs) and Channel Access Processes (CAPs). Each node in a broad-
cast communications network would have one or more MGPs to generate traffic according
to specified distributions for message lengths, arrival rates, etc., and one CAP to transmit
messages across the channel (later versions split each CAP into two separate processes, one
for transmitting messages and the other for receiving messages). These processes would
invoke the functions contained in five modules. Listed below are the modules, with brief
descriptions of their functions and secrets:

Message Generation - This module hides the details of message generation, such as the
particular probability distributions in use for determining message inter-arrival time,
message length, etc. It provided functions to generate a new message and to generate
the time between messages.

Message Storage - The queues of messages that are awaiting transmission are hidden by
this module, as are the priority queuing algorithms. Functions are provided to return
the highest priority waiting message, to remove a message from the store, to enter a
message into the store, etc.

Channel - This module hides the noise and delay characteristics of the communica-
tions channel. There are functions to transmit or receive data, and to obtain the
propagation delay between a pair of nodes.

Protocol - The detailed behavior of the protocol for transmitting and receiving
messages is concealed in this module. The specific functions vary according to the
protocol, but there are generally functions to handle acknowledgments and retrans-
missions, to manage the storage of portions of messages, and so forth.

Statistics - This module provides a common set of functions for the collection and
reporting of statistics recorded during a simulation run. It hides the algorithms and
data structures used to generate the statistics and reports.

The user interface and simulator control design was specified in less detail, since the
functions to be performed were typical of many other simulation programs. Three modules
were identified, as follows:

Control - This module provided the user interface to top level simulation functions,
such as reading parameters, initializing the simulator, initiating a simulator run, and
generating reports. As implemented, this module reads user requests, checks them for
validity, and invokes lower level functions to execute them. It requires no detailed
knowledge of the lower level functions.
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Parameter Input/Output - The user interface and functions for the acquisition, dis-
play, and saving of parameter values were hidden in this module. In order to prevent
this module from requiring detailed knowledge of the parameters and input/output
formats for all modules in the system, each module in the Communications System
Simulator implemented functions to perform these operations for itself. The Parameter
Input/Output module needed only to know the names of these functions so that they
could be invoked when needed.

Report Generator - This module controlled the printing of simulation statistics. To
prevent this module from knowing all the statistics variables in the system, a function
was provided for each type of statistics variable to print a report. All instances of
statistics variables were linked together, and the Report Generator required only to
know the name of the list head in order to sequence through the set of variables,
printing the required output.

IMPLEMENTING AND DEBUGGING THE SIMULATOR

SIMULA [13,14,15] was chosen as the implementation language, based on its sup-
port for abstract types and its availability on a local PDP-10. Although this choice was made
prior to completion of the design, it is fair to say that the language choice had no influence
on the design, since the author had not more than a nodding acquaintance with the language
prior to this project. No SIMULA code was written prior to the completion of the design.
Consequently, the implementation began with the development of several small SIMULA
programs to resolve questions on how certain language features worked.

The pseudo-code examples for processes in the design had employed the concept of
events - a process would wait for an event to occur, service an event passed to it, and wait
for the next event. The SIMULA test programs revealed that SIMULA did not support this
concept directly; either events and a scheduling mechanism for them had to be introduced,
or the design for processes had to be modified. Since this problem affected the design, a
memorandum was written posing the alternatives and was circulated to the reviewers of the
earlier design document. The decision made was to avoid the use of events and to split the
CAP into two separate processes, one to receive and one to send traffic over the channel.

Following this decision, the mapping of the design into SIMULA was reasonably
straightforward. The CLASS structure of the language provides a good mechanism for the
implementation of type abstractions. Of the abstract types used in the implementation,
the one that has proven most useful in later developments is the abstract type for statistics
collection. The development and use of this abstract type has been thoroughly documented
elsewhere [16], but we will review it briefly here as an example of how type mechanisms
were used to hide information.

The purpose of this family of types is to encapsulate the functions and storage required
for recording simulator measurements such as message delays and backlogs, calculating
statistics (such as the mean and variance) from these measurements, generating printed
reports of these statistics, and, optionally, histograms of the measurements. Rather than a
single type, a family of types is required because some measures (such as delay) are for
inherently continuous (floating point) quantities, while others (such as the number of items
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queued) are for inherently discrete (integer) quantities. Further, if histograms are to be
collected, more storage is required for collecting the statistics and more parameters (number
of bins, bin size) must be specified. Each statistics variable is specified as either real or
integer and histogram or no histogram. The same operations are provided for all of the types:
initialization (to generate a new instance of the type), update (to record an observation),
and report (to print a summary of the observations). For histogram type variables, one
additional operation is supplied to print the histogram.

Defining the types as SIMULA CLASSes satisfied the need for encapsulation of the
storage and operations, but an additional goal was to hide from the simulator report genera-
tion mechanism the identity and number of statistics variables (instances of these types)
that were to be printed. If this information were successfully concealed, changes in the
number and type of statistics collected would cause no changes in the report generator. To
accomplish this goal, all statistics variables were contained in a single linked list. (SIMULA
provides a built-in type for such lists.) Each time a new instance of one of the statistics
types was created, it was linked to the end of this list. The report generation routine then
was required only to know the name of the list head and the SIMULA list operators. After
printing a general heading, it merely invoked the report operation provided with each list
element. Since it is possible to interrogate the type of a list element, the report generator
could also detect whether a particular variable was of a histogram type and, if so, invoke
the type-specific histogram generation routine.

Coding and debugging were carried out in parallel. The lowest levels of the system (in
the sense of the "uses" hierarchy [17] ) were generally coded earliest and were compiled
as soon as they were coded, in order to detect errors as early as possible and to make the
code more readily available for reading by an interested observer. Thus, the abstractions for
the definition of probability distributions and the generation of random numbers were the
first coded, followed by the abstractions defining messages, message stores and message
generator processes. A skeleton control module was implemented next, together with
procedures to save and restore parameters, in order to allow execution of the completed
portions of the code. The control functions and utilities were then gradually expanded as
the coding of the abstractions for slots, blocks, channels, and finally, the test protocol
module for slotted ALOHA was completed. The mechanisms for defining the recording'
statistics to be collected were the last to be added.

The procedures just described facilitated the integration of new sections of code with
existing code, since the existing code had already been compiled, read by an observer, and,
generally, executed in some fashion before the new code was written. Attention could then
be focused on the relatively small new section added rather than dispersed over the entire
simulator. Initially, all code produced was read by a reviewer, but this requirement was
dropped after several weeks because of competing demands for the reviewer's time.

The primary reviewing and debugging techniques used during the initial coding phase
included the code-reading already mentioned and the use of compiler features for compile-
time syntax checking, run-time error detection, and interactive debugging. Although the
code-reading uncovered some bugs, it was primarily helpful in ensuring that the code that
was produced was well commented and consistent with the design documents. As successive
modules were coded and compiled, many typographical errors resulted in faulty block
structure and were detected thereby. The errors reported by the compiler in such instances
are, unfortunately, usually unrelated to the true source of the problem. The structure
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provided by PDP-10 SIMULA for separately compiled procedures proved to be more
hindrance than help, and separate compilation finally was abandoned as a development
tool in favor of a single large compilation for the entire simulator. The problem centered
on the requirement that PDP-10 file names (limited to a length of six characters) and the
names for the separately compilable CLASSes they contain be consistent. The run-time
debugging package was very helpful (in fact, its functions are used by the control module
to allow display and alteration of parameters). The ability to display values of variables
after an execution error was particularly valuable during debugging; its ber efits would be
even greater if values returned by procedure calls could be made available.

An informal error log maintained during the development revealed that the most
numerous errors were clerical, and, of these, the most bothersome were errors resulting in
mismatched BEGIN-END pairs. Other errors included improper I/O function usage (caused
partly by a lack of details in the SIMULA documentation), problems in attempting to use
separate compilation, improper parameter passing, default initialization (SIMULA sets
variable values to zero initially, masking some references that should be errors), and im-
proper assumptions about the order of evaluation of Boolean expressions. The most dif-
ficult errors to find were problems that only revealed themselves in unusual statistical
measurements from simulation runs. In one case, a few messages seemed to have in-
ordinately long processing delays; the bug found was the improper resetting of an index
on an infrequently exercised processing path. This error caused parts of a message to remain
queued when they could have been transmitted. Debugging the simulator in this respect
appeared quite similar to debugging an actual implementation of the protocol. The design,
construction, and validation (described below) of the simulator were completed within
6 man-months. The length of the program was roughly 2450 lines of SIMULA source (this
and subsequent measures of code length include blank lines and comments). About 200
of these lines were code specific to the ALOHA protocol.

VALIDATION

The initial validation of the simulation was performed by implementing the required
processes and models for the slotted ALOHA protocol and comparing simulation results
with analytic and simulated results from Lam [18]. This process uncovered some bugs in
the implementation and led to a deeper understanding of both the details of the protocol
and the assumptions on which Lam's analysis was based. Ultimately, satisfactory agreement
between the simulation and Lam's work was obtained, and the details of the implementa-
tion and validation were described in a technical memorandum [19].

MODIFYING THE SIMULATOR FOR OTHER PROTOCOLS

Following validation, the simulator was used to study three different protocols relating
to two particular Navy problems. These studies provided useful results and are documented
elsewhere [20,21], Their relevance here is primarily in the changes that were made to the
simulator to accommodate the new protocols. The design and development techniques used
in the project were intended to reduce the need for changes and to limit them to particular
areas of the program. Although we did not succeed in limiting changes solely to the protocol
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module and processes, the software engineering approaches used in the design and con-
struction of the simulator did simplify the few changes that were required outside of the
protocol module. In this section we review the protocols that were modeled and the changes -

they required.

Navy Tactical Protocol

The first additional protocol implemented (since the original slotted ALOHA) was a
design for a proposed Navy system for transmitting tactical data among ships and shore
stations. This protocol was based on polling, with a central controller broadcasting the
polling list. Unlike the slotted ALOHA system, explicit acknowledgments were required for
received data. Consequently, a functioning CAP-receive process was required to receive data
and generate the acknowledgment. Because of the delay present in the channel, it was
possible that parts of two transmissions for the same receiver might be outstanding at the
same time. The process synchronization primitives in SIMULA, however, do not support
the concept of multiple events pending for a single process. The solution applied was to
introduce a channel process (in addition to the channel module). This process was responsi-
ble for receiving all transmissions, queuing them for the appropriate delay period, and then
awakening the appropriate receiving processes. Beyond the addition of this process, only
the transmission format blocks and protocol processes were rewritten (as planned), and even
these were able to use many of the same utility functions implemented in the protocol
module for slotted ALOHA. The Message Generation, Message Storage, Statistics, Control,
Parameter Input/Output, and Report Generator modules were unchanged. The effort to
make the changes required for this protocol and to debug them was about 2 man-months.
The length of the program grew to approximately 3100 lines, of which about 700 were
devoted to protocol-dependent ioutines.

CPODA (Contention-Based, Priority Oriented, Demand Access)

Next, a simulation of CPODA, a packet protocol with distributed control [22,23] was
implemented. In this protocol there is a fixed length frame, which is divided into reservation
and data transmission subframes. These subframes are of varying length, and the reservation
portion is accessed in a contention mode. Each node transmits reservations prior to trans-
mitting data, and each node keeps track of the current queue of reservations by listening to
all of the traffic on the channel. Two types of timeouts are performed by nodes operating
under CPODA. First, each time a node transmits a reservation or data packet, it listens for
the echo of that packet from the satellite. If the echo does not occur, the reservation packet
is requeued for transmission later. Second, if the echo of a data packet is received, the node
waits a specified length of time for the positive response from the intended recipient, and,
if none is received, queues a reservation packet to allow later retransmission of the data
packet. In the Navy tactical protocol, there was only one type of timeout, and this was
tied to the polling frame structure, so the channel process queuing mechanism was suf-
ficient. The CPODA case was sufficiently complex to require a reexamination of this choice.

This reconsideration led to the introduction of an event mechanism in the simulation.
An implementation was devised wherein each event was an instance of a SIMULA PROCESS
that would, on awakening, activate the process intended to receive the event and pass it a
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parameter defining the event type. This approach avoids the requirement of a duplicate
scheduler running on top of the SIMULA scheduler. (It was later discovered that Franta
[15] proposes a similar implementation in his book (p. 176).)

Again, the changes to the simulator were principally in the protocol module, as
planned, but the event mechanism made possible the elimination of the channel process
added in the previous protocol simulation, so there were some changes in the channel
module as well. The definition of the event mechanism was made outside of the protocol
module, so that it would be available for use in future simulations. The effort required to
make all of these changes was approximately 3 man-months. Length of the entire simulator
grew to approximately 3500 lines of SIMULA, of which almost 1000 were devoted to
CPODA-dependent code.

Existing Navy Polling Protocol

A third protocol simulated was a Navy protocol currently in use for the exchange of
messages over satellite channels. This protocol is again a polling scheme with a central
controller; it has a simpler structure than the Navy Tactical Protocol, since its delay require-
ments are less stringent. It is used principally for the transmission of text messages from
ships to a shore station over a UHF satellite link.

Some additional constraints placed on this study allowed the model to be simplified
greatly: acknowledgments and channel noise did not have to be modeled, and specified
distributions were to be used for message generation. These restrictions eliminated the
need for some lengthy routines that had defined an abstract type for probability distribu-
tions, the need for the channel module, and for any processes to receive messages or queue
and process acknowledgments. Consequently, instead of building relatively trivial routines
within the general framework already implemented, it was decided to construct a separate,
simple simulator for this protocol by borrowing only the appropriate modules from the
original simulator.

The statistics and report generator modules were borrowed intact, while the message
generation module was simplified to use probability distributions instead of the more
general distribution descriptors from the other simulator. The abstraction implemented to
model messages was simplified, since no specifications of destinations or priorities were
required, and the message store module became a simple FIFO queue, using the predefined
SIMULA operators. The protocol module and a very simple simulation control and parame-
ter input routine were written from scratch.

This approach was quite successful within the limited goals of the study. The simulator
was constructed quickly and debugged easily. Other than the elimination of unneeded
functions, virtually no changes were required in the borrowed modules. Total length of this
simulator was about 700 lines, of which about half were borrowed. The simulator was
constructed and debugged in less than a month.

The need for a "minimal" simulator lends further credence to the design concepts of
program families and minimal subsets [24,251. It is interesting to note that, although those
concepts were not explicitly employed in this project, the use of abstract types and informa-
tion hiding modules led to a result consistent with them.
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EXPERIENCE GAINED IN USING THE SIMULATOR

In addition to the lessons to be learned from the successive modifications to the -

simulator software, the effectiveness of the simulator as a tool for studying communications
protocol performance is of interest. As mentioned above, the simulator was applied to two
particular Navy problems. One of these involved the use of the distributed CPODA protocol
to control communications among one to twenty ships and a shore station. The traffic in
this case was primarily transactions with remote, land-based computer systems. The other
problem involved evaluating the use of CPODA and the other protocols as vehicles for
merging traffic from two presently independent Navy communication systems over a single
channel. Useful results were obtained in both studies; CPODA appeared to provide superior
performance in nearly all of the cases examined in the second study, and it seemed likely
to provide adequate (though in some cases marginal) responsiveness in the first study.

In the course of performing these studies, a number of discoveries were made about
the simulator itself. The simulator was designed to be run interactively, and the commands
provided by the user interface were helpful in general. The PDP-10 run time SIMULA
support aided the implementation of some of these - the debug package (DDT) provides
facilities to display and alter values of program variables, set breakpoints, and to interrupt
the simulator during execution. These facilities were helpful both during debugging and,
occasionally, to alter parameter values during production runs. An unfortunate side effect
of the run-time support was that it was impossible (without coding a special assembly
language routine) to save a complete core image in a file so that it could be restarted later.
The uncertainty of the effort involved in coding this routine and the limited project
resources prevented its implementation.

The simulator itself provided facilities to save and restore parameter sets in files. This
proved to be a crucial function, since the volume of information required to specify a given
experiment was substantial. In fact, the interactive dialog for parameter specification was
burdensome enough that it became easier to edit a saved parameter file with a text editor
than to go through the entire dialog if only a random number seed or one or two parameters
were to be changed.

The primary problems encountered in actual simulator runs were storage limitations.
Although limits on the number of nodes in a simulated communications network were not
specified in the initial design, the number of nodes expected in the first application had
been planned as less than 15. Storage requirements were not a major consideration in the
design or implementation, consequently, and test parameter sets were generated with
networks of more than 50 nodes with the slotted ALOHA protocol. The actual studies,
however, often specified multiple priorities of traffic, a variety of message generation
processes, extensive statistics collection, and other factors that multiplied the storage
requirements per node simulated. Further, if a system were tested under conditions near
saturation, message queues might generate sizable, though transient, backlogs that would
exhaust the SIMULA freespace pool. All of these factors made simulations involving more
than 30 nodes impractical. The second study described above was made with a 30 node
network and three priorities of traffic, after removing all statistics collection variables that
were not of central interest. Project sponsors felt the 30 node network was sufficiently
realistic for the case at hand, but would have liked the ability to investigate larger networks
as well. The restricted version of the simulator of the existing Navy Polling Protocol had
substantially lower storage requirements, but, naturally, it restricted functionality as well.
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CONCLUSIONS

Seven software engineering techniques applied in the design and construction of the
simulator were listed in the opening section of this paper. Though all of these techniques
proved beneficial to some degree and some of them overlap, the impact of each is reviewed
separately below:

Complete design prior to coding - This requirement prevented premature freezing of
the design, but was less important than the design reviews.

Design review by knowledgeable outsiders - This technique required that the design
be sufficiently documented that others could comprehend it and suggest revisions.
Although the reviews that were provided did cause design changes, the exercise of
creating the documentation for the design was in itself beneficial. The requirements
description that was generated to go along with design was also useful. Perhaps more
time should have been devoted to the requirements statement; in retrospect, estab-
lishing a better definition of the environment to be modeled (e.g., with respect to
channel noise characteristics) and delineating performance requirements might have
revealed problems that were not apparent until later in the project.

Use of the information hiding principle in design -The modularization of the simula-
tor based on the information hiding principle was beneficial in several respects: it made
the design easier to describe, it forced consideration of future changes to the system
early in the design process, it simplified the making of changes, and it led to a structure
that provided useful parts to other simulators.

Use of abstract types - This concept, together with therinformation hiding principle
and use of a language supporting abstract types (SIMULA) aided in the organization
of the implementation and led to the creation of at. least one abstract type (for statis-
tics collection) that is now being used in new simulators under development by other
projects.

Code reading by other than the programmer prior to testing - This procedure was only
carried out for the first few weeks of the coding. A few bugs were found, but its
primary benefit was to force the inclusion of good comments and clean coding
practices.

Co-operating sequential processes - Although the use of processes is hardly novel, it
was central to this design. If processes had not been available in the programming
language chosen for the implementation, it would have been worth the effort to
implement them.

Use of pseudo-code - This widely used technique was used to provide initial sketches
of code throughout the project. It helped significantly in communicating the design
to readers not familiar with SIMULA.

Often, software engineering techniques are argued to be desirable, but time consuming.
Although this project did not have firm deadlines, the initial simulator was completed
and validated with the slotted ALOHA protocol in less than 6 man-months. The
documents and programs produced have continued to be useful over a period of more
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than 2 years. Currently, a simulator for HF radio networks is under development by
a staff member not involved in the earlier project. Given only the simulator listing and
the relevant documents, he has been able to incorporate significant parts of the original
simulator into his work.

There is, of course, room for improvement. In particular, if the project were repeated,
more time should be devoted to the performance implications (CPU time and, especially,
storage requirements) of the design, to the level of detail actually required in the channel
model, and to the user interface for parameter specification. Nevertheless, the project
succeeded in applying software engineering techniques and in producing a tool for per-
formance analysis applicable to a variety of protocols and able to be used and modified
by other persons.
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