
NRL Report 8554 41
4O,

Best Available Technologies (BATs)
for Computer Security

CARL E. LANDWEHR

Computer Science and Systems Branch
Intformation Technology Division

December 21, 1981

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (When DOat Entered)
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 8554|
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Interim report on a continuing
BEST AVAILABLE TECHNOLOGIES (BATs) NRL problem.
FOR COMPUTER SECURITY 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(a)

Carl E. Landwehr

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory 61153N; RR0140941;
Washington, DC 20375 NRL Problem 75-0113-0-1

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research December 21, 1981
Arlington, VA 22217 13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(I1 different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
75A. DECLASSIFICATION/DOWNGRADING.

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side It neceesary nd identify by block number)

Computer security Capability architectures Security kernel
Program verification Formal specification Risk assessment
Security measures Security models Virtual machines
Virtual memory Software engineering

20. ABSTRACT (Continue on reverse aide It necessary and Identtty by btock num"Oer

Over more than a decade, government, industry, and academic centers have invested substantial
resources in techniques for developing secure computer systems. The major projects to develop such
systems are surveyed from the perspective of a system developer about to undertake the design and
implementation of a secure software system. Experience with specific techniques and applications
is summarized, and recommendations are given. Suggested approaches to each phase of the system
life cycle are provided. The principal recommendations to developers are that they consider the
security requirements of each system as part of its functional requirements, rather than as a

DD FORM DD I J AN 73 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0102-014-6601

i

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE (Whn D.t. Entr.rd)

20. ABSTRACT (Continued)

separate set of requirements; that they continue to think about security throughout the design and
implementation of the system; and that they use the best available software engineering technology.

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

ii

s

CONTENTS

INTRODUCTION .. 1

ASSUMPTIONS .. 1

CASES OF INTEREST 2.. 2

EXPERIENCE WITH TECHNIQUES AND APPLICATIONS 2

ADVICE FOR THE DEVELOPER 10

SUMMARY .. 14

ACKNOWLEDGMENTS.. 14

REFERENCES...I... 14

APPENDIX A-Comments on Secure-System Developments 15

APPENDIX B-Bibliography ... 21

iii

BEST AVAILABLE TECHNOLOGIES (BATs)
FOR COMPUTER SECURITY

INTRODUCTION

Over more than a decade, government, industry, and academic centers have invested substantial
resources in techniques for developing secure computer systems. A good deal has been learned about
the problem, and a number of approaches have been explored. But what useful advice can we give to
those about to embark on a system development? If the application requires a multilevel secure sys-
tem, how should the developer proceed? The purpose of this report is to summarize past experience
and to guide developers.

The next section lists a few general assumptions about the system developer's environment. The
third section describes past, present, and planned projects that have attempted to build secure computer
systems. A brief discussion of each system listed in the tables can be found in Appendix A. The
fourth section summarizes the experience gained in developing secure systems by listing a number of
techniques and applications (alphabetically by "buzzword") and providing a brief discussion of each.
The fifth section provides advice to developers, organized by the phases of the system development
cycle.

There is no simple recipe for creating a multilevel secure system. The "three-layer" security ker-
nel approach, in which application programs execute on an operating system emulator that interfaces to
the security kernel, has yet to produce a system that is efficient enough for practical use (although there
is some hope that kernels tailored to specific applications may yet achieve this goal). There has been
considerable work on formal specification and program verification techniques, but the tools available to
support these activities require further development before they can be employed in development
efforts.

To be secure, a computer system must reliably enforce a specified policy for accessing the data it
processes while it accomplishes the functions for which it was built. Since software engineering has as
its goal the production of reliable, maintainable programs that perform according to their specifications,
the best techniques developed for software engineering should be the cornerstone of efforts to develop
secure computer systems.

The principal recommendations to developers are (1) that they consider the security requirements
of each system as part of its functional requirements rather than as a separate set of requirements; (2)
that they continue to think about security throughout the design and implementation of the system; and
(3) that they use the best available software engineering technology [1].

ASSUMPTIONS

We assume that the developer is to construct a system for some particular application (e.g., packet
switching, message processing, software development) and that he has substantial control over the
choice of hardware for the system, the choice of software design and documentation strategy, and the
choice of validation and verification strategy. He will have somewhat less control over the choice of
programming language; he will have much less control over the interfaces required of his system; and
he will have still less control over the set of systems with which the new system is required to interface.

Manuscript submitted September 18, 1981.

1

C. E. LANDWEHR

CASES OF INTEREST

We choose not to list all of the journal articles, memoranda, research papers, and so forth, relat-
ing to computer security that have been published in the last decade or so. In any case, few of these
have the weight of actual system developments behind them. This section summarizes those projects
over the last 10 to 15 years (including currently underway and planned projects) that have included
significant efforts to provide secure software systems. Although there have been no deliberate omis-
sions to the list, it is possible that some developments have been overlooked. The following questions
were asked about each system:

1. When did its development begin?

2. Who sponsored it (i.e., paid for it)?

3. Who built it?

4. What were its security goals?

5. What approach was used to reach these goals?

6. Were formal specifications used? If so, in what language were they written?
Who wrote them?

7. Was any verification done? If so, what tools were used? Who used them?

8. What hardware was the system built on?

9. What programming language(s) were used?

10. If it was built, did the system perform adequately for some practical use?

11. If installed, was it certified for operation with classified data? If so, what mode?

12. Was it/is it installed? Where?

13. What lessons were learned?

The answers to these questions (except the last) are given in Tables 1 to 3. The abbreviations
used in these tables are listed in Table 4. Brief comments about each project, summarizing noteworthy
aspects and lessons learned, are provided in Appendix A. The reader is cautioned that some of this
information is subject to change (particularly for projects underway or planned) and parts of it are the
personal conclusions of the author of this report. The bibliography (Appendix B) provides additional
sources of information on the projects listed in Tables 1 to 3, but the literature consists largely of
technical reports; old reports may be hard to obtain, and reports on new projects have yet to be written.

EXPERIENCE WITH TECHNIQUES AND APPLICATIONS

To distill the lessons from these projects, it is helpful to view them according to the various tech-
niques they have used and the applications that have been tried. Listed alphabetically in this section are
various technical concepts and application areas for developing secure systems, together with comments
concerning experience with each.

2

NRL REPORT 8554

Table 1 - Projects Completed*

System When Who Who Goals Approach Form Veri- Hard- Prog. Prf./ Where
Started Paid Built Spec. fic. ware Lang. Cert. Installed

ADEPT-50 late ARPA SDC GP TS w/ HWM model no no IBM asm, Y NMCSSC,
60s security objects /360 MOL S AFCP,

CIA, SDC

MULTICS mid NSF? MIT info. VM, rings no no GE EPL Y MIT, BTL,
60s ARPA? utility segments 645 (PL/I) N etc.

MULTICS early AF MIT/ secure Fix code, no no GE EPL Y Pentagon
Sec. En- 70s MTRE MULTICS B+LP mod. 645 (PL/I) M? AFDSC
hance.

MULTICS mid AF? MIT/ kernel restruct- some no NA NA NB spec only
Kernel 70s MTRE for MLTCS ure exist- N

ing impl.

MITRE early AF MTRE kernel B+LP mod. yes man- PDP/ SUE- D MITRE
Brassbd. 70s prototype as base ual 11 11 N
Kernel

MITRE mid AF MTRE secure kernel w/ yes no PDP/ C D MITRE
Secure 70s UNIX emulator 11 N
UNIX

UCLA early ARPA UCLA data sec./ kernel w/ yes some PDP/ UCLA D UCLA
DSU 70s UNIX emulator 11 PSCL N

MME late ARPA MLS msg. built on no no PDP/ BLISS, Y CINCPAC
(SIGMA, 70s Navy ISI system pseudo- 10 BCPL, S J-3
Hermes, BBN test kernel ?
MIT-DMS) MIT

SHARE-7 mid Navy FCD- GP TS w/ based on no no AN/ CMS-2 Y FCDSSA
70s SSA security kernel UYK-7 (C) locs

post-hoc
VMM arch.

DAMOS 1979 CR CR OS for kernel VDL no CR80 ? Y ?
communi- w/TP's on S
cations capability
appl. arch.

*For explanation of abbreviations see Table 4.

3

C. E. LANDWEHR

Table 2 - Projects Under Way*

System When Who Who Goals | AppBroach |Form | e- Hard- P ing. |Prf./ tWhere
I____ Started IPaid IBuilt I___ I_ I____ Spec. fic. I1 ware Lang. ICert. I~ Installed

1980 1 Navy IIPS

TLS,
SLS,
I-J

TLS
SPCL

TLS
SPCL
HYWL

TLS IBM/
ITP 370

TLS PDP-
SRI 11

TLS
SRI

HYWL

HYWL
Lvl
6

some I (some) I PDP-
SPCL?
GYP

(Eu-
clid)

No

(GYP) I (GYP)

NO

Yes,
post
hoc

TLS
SPCL

TLS
I-J

No

Yes

GYP

no

NO

Yes
ITP

TLS
SRI

SYTK

TLS
ITP

No

Yes
(MAN)

GYP

no

11

LSI-
11

PDP-
11

PDP-
11

PDP-
11

IBM
Se-
ries I

PDP-
11

IBM/
370

HYWL

LSI-
11

Zilog
8000s

Jovial NC (NATC)
J3 (M) (DCA)

MDLA

UCLA
PSCL,

C

N Logicon,
(M) MITRE

NC (MITRE)
(M) (NSA)

C, NC NOSC
MDLA (M) Logicon

Eu-
clid

NC
(M)

C ID Army
(MDLA) I(M) FORSCOM

UCLA
PSCL

C,
asm

asm

PSCL

asm

GYP
(M)

asm?

SDC
?

NC (DIN I
(M?) sites)

NC (SAC
(M?) sites)

NC (WWMCCS
(M) sites)

Tymshare

(OSIS)

PGS

NC
(M?)

NB
(M)

NC

NC
(M)

*For explanation of abbreviations see Table 4.

4

1976

late
70s

late
70s

late
70s

ARPA
AF
DCA

NSA
ARPA
Navy

HYWL
ARPA
DCA,
NSA,
Navy

Navy
ARPA

SDC

FACC

HYWL

LGCN

KVM/370

KSOS
(KSOS-1 1)

SCOMP
(KSOS-6)

ACCAT
GUARD

LSI
GUARD

FORSCOM
GUARD

SDC
Comm.
Kernel

AUTODIN
II

SACDIN

COS/NFE

GNOSIS

PSOS

Message
Flow Mod-
ulator

SASS

security
retrofit
VM/370

Secure
UNIX

Secure
UNIX

sanitize/
filter
DBMS to
DBMS

single
operator
ACCAT GD

filter-
terminal-
to-host,
w/operator

secure
comm.
proc.

secure
comm.
proc.

secure
comm.
proc.

secure
WWMCCS/
DIN 11
NFE

segregate
client
data

Secure
Op. Sys.

filter &
transform
output

secure
archival
file sys.

kernel w/
VMs, TPs

kernel,
emulator,
TPs

kernel,
emulator,
TPs, hdwe
assist

TPs on
KSOS

TPs on
bare
hardware

TPs on
UNIX

tailor
UCLA ker-
nel

kernel-
based
arch.

kernel-
based
arch.

"HUB" TM
kernel,
trusted
modules

Capabili-
ties

Spec. and
Ver. en-
tire OS.

TPs,
full ver.

multi-
micro-
kernel

1980

late
70s

late
70s

late
70s

late
70s

early
70s

1980

1981

1978

DCA

DCA

AF

DCA

TymS

NSA

Navy

Navy

LGCN

SDC

WU,
CSC,
FACC

ITT
IBM

DTI

TymS

FACC
HYWL

UTX

NPGS

NRL REPORT 8554

Table 3 - Projects Planned*

System When Who Who Goals Approach Form Veri- Hard- Prog. Prf./ WhereStarted Pays Builds Spec. fic. ware Lang. Cert. Installed

RAP early NASA MTRE filter- TPs on ? ? Z80? ? N Space
GUARD 80s terminal- KSOS ? ? Shuttle

to-host, planning
no oprtr.

KAIS early KAF? MTRE " ? " ? ? Z80 ? NC Korea?
GUARD 80s ?

WWMCCS early DCA - MLS nets Sep. nets ? ? ? ? NC (WWMCCS
Local 80s for WWMCCS w/GUARD (M) sites)
Net nodes for internet

MITRE 1980 AF? MTRE secure process No No ? ? NC (MITRE)
MLS intelli- per pro- (M?)
terminal gent cessor,

terminal MLOs

NRL 1981 Navy NRL MLS msg. appl.-based ? ? ? ? D -
MMS/TDMS SDC system/ sec. model, (M)

BBN database prototype

MITRE 1981 Navy MTRE secure tailored (Y) (Y?) SCMP C? NC (MITRE)
DBMS MRS DBMS kernel TLS (M)
Kernel

EIFEL 2 late GDR? GDR MLS air- kernel ? ? ? ? ?
70s SMNS traff. ctl. based? ?

TLF?

Canadian early ? ? ? ? ? ?
Maritime 80s
Command

*For explanation of abbreviations see Table 4.

5

C. E. LANDWEHR

Table 4 - Abbreviations Used in Tables 1 to 3

? data unknown or uncertain
() -enclosed data indicate plans, not accomplishments

Performance Codes

N - No - performance not adequate for operational use
Y - Yes - system could be used operationally
D - Demo - system built as prototype or demo only
NC - System not yet complete enough for evaluation
NB - System never built

Certification Codes

M - Multilevel
C - Controlled
S - System high
D - Dedicated
N - Not certified

Hardware
GE 645 Specially modified GE 635. When Honeywell bought GE, the numbers changed.

This is the original MULTICS machine number. New Honeywell models have
since been introduced and the commercial version of MULTICS runs on the newer
hardware (Honeywell 6180).

Lvl 6 Honeywell Level 6 minicomputer
SCMP SCOMP - Honeywell Level 6 with added Security Protection Module (SPM)

Companies/Laboratories

BBN Bolt Beranek and Newman, Inc.
CR Christian R6vsing (Denmark)
BTL Bell Telephone Laboratories
CSC Computer Sciences Corp.
DTI Digital Technology, Inc.
FACC Ford Aerospace and Communications Corp.
HYWL Honeywell
IPS I.P. Sharp Associates
ISI Information Sciences Institute (USC)
LGCN Logicon
MTRE MITRE Corp.
SDC System Development Corporation
SMNS Siemens (W. Germany)
SRI SRI International
SYTK Sytek
TLF Telefunken (W. Germany)
TymS Tymshare, Inc.
WU Western Union

(Table continues)
6

NRL REPORT 8554

Table 4 (Continued) - Abbreviations Used in Tables 1 to 3

Government Organizations

Air Force Command Post (located in Pentagon)
DoD Advanced Research Projects Agency
Air Force Data Services Center
Air Force
Central Intelligence Agency
Commander-in-Chief, Pacific
Defense Communications Agency
Defense Intelligence Agency
Fleet Combat Direction Systems Support Activity
Naval Air Test Center, Patuxent River
National Military Command System Security Center
Naval Postgraduate School
Naval Research Laboratory
National Security Agency

asm
GYP

I-J
ITP
MAN
MOL
MDLA
PSCL
SPCL
UCLA PSCL

UNIX
VDL

AM
B+LP
GD
GP
HWM
MLO
MLS
SLS
TLS
TP
TS

Assembly language (for whatever machine indicated)
Gypsy - programming and assertion language, with verification
tools, developed at University of Texas
Ina JoTM - specification language supported by SDC
Interactive Theorem Prover - supported by SDC, used w/Ina Jo
Manual proofs
Macro Language for IBM/360
Modula
Pascal
SPECIAL - specification language, tools available from SRI
Pascal-to-C translator implemented at UCLA for a "verifiable"
Pascal subset
UNIXTM operating system, originally developed by Bell Laboratories
Vienna Definition Language

Access matrix
Bell and LaPadula
GUARD
General purpose
High water mark
Multilevel object
Multilevel secure
Second-level specification
Top-level specification
Trusted process
Time sharing

7

a:

r-

F-.0

AFCP
ARPA
AFDSC
AF
CIA
CINCPAC
DCA
DIA
FCDSSA
NATC
NMCSSC
NPGS
NRL
NSA

Languages/Tools

Miscellaneous

C. E. LANDWEHR

Capabilities

A capability is usually defined as an unforgeable ticket that grants its holder a specific kind of
access to a particular object; capabilities can be implemented as virtual addresses, with additional bits to
define allowed access modes. Capabilities provide a mechanism for controlling access to objects, not for
implementing security policy. The provision of security depends on the design of the system, which
may be based on the use of capabilities. Nevertheless, they are an appealing tool for structuring the
implementation if the appropriate hardware is available. Without the appropriate hardware, there is
considerable evidence that capability-based systems perform poorly (but see GNOSIS). Architectures
based on the manipulation of capabilities are still more touted than tried, although hardware architec-
ture trends seem to be moving in this direction (e.g., the Plessey S250, the IBM Svstem 38, and the
Intel 432). The UCLA DSU kernel (and hence the SDC Communications Kernel) employs the con-
cept of a capability but is constrained to use the addressing hardware of a PDP-11. PSOS is intended to
employ a capability architecture and will be an interesting test case, if it is built. The GNOSIS effort
claims to be based on an implementation of capabilities on standard IBM 370 hardware. No secure sys-
tem developments using the Plessey hardware have been reported.

Databases

None of the secure system development efforts so far have tried to deal with the complexities of
securing a database management system shared among a variety of users. There is substantial theoreti-
cal evidence that statistical databases are impossible to secure against inference, but there are some
techniques that can make it more difficult for information to be compromised.

Encryption

There are increasing efforts to apply encryption within computer systems. Protection and distribu-
tion of keys then becomes a critical issue. Because they were generally trying to secure the operating
system itself, which would presumably control access to keys, none of the systems listed in Tables 1 to
3 used encryption as a technique for protecting information.

Kernels

Many of the projects listed above sought to demonstrate the practicality of the security kernel
approach. A security kernel is a small subset of a system that is responsible for its security and so must
provide complete validation of program references, must be isolated (tamperproof), and must operate
correctly according to a stated security policy. The results so far are mixed, at best. The three-layer
approach (user programs running on an operating system emulator running on a security kernel) has
yet to produce a system efficient enough for operational use. The KSOS represents the most serious
attempt to use this approach to build an operational system, and it has fallen far short of its perfor-
mance goal of approximately 50% degradation of unmodified UNIX on the same hardware. Some
observers lay the blame at the feet of the PDP- 1 hardware. Performance data are just becoming avail-
able on the kernel for the SCOMP, which is built on hardware specifically modified to assist security.
Honeywell now plans to build a minimal operating system interface, including a simple file system, out-
side of the kernel, instead of developing a full emulator. The KVM/370, which is more on the order of
a retrofit kernel, has been brought up on IBM and Amdahl hardware, and early indications are that it
offers about 50% of the performance of unmodified VM370 on the same hardware. SHARE-7 is now
described as having a security kernel, but it appears to have been constructed more on the virtual
machine model, with kernel terminology superimposed on it after the fact. The SDC Communications
Kernel, which seems to be the kernel-based system closest to delivering a useful product at present, is
really a two-layer approach: the kernel is carefully tailored for the application and the application runs
directly on the kernel. The AUTODIN II kernel is rarely cited as a good example of anything. Recent
reports from the Christian R6vsing company in Denmark may indicate a significant advance in the
development of an operational system based on a security kernel.

8

NRL REPORT 8554

Measures

There are no useful quantitative measures at present for defining the relative "security" of various
systems. None of the projects listed in the tables has addressed this problem seriously. The only realis-
tic measures would seem to be the difficulty of penetration or the rate of unauthorized information flow
out of the system under specified conditions.

Network Architectures

Although papers are being published in this area, novel architectures for secure networks are lack-
ing. While some of the efforts described have developed machines for use as network switches
(AUTODIN II, SACDIN), none has provided innovative solutions to network security problems.
Topics under study include the use of public key encryption algorithms and making communication
protocols secure. End-to-end encryption does appear to be coming closer to being practical. The
WWMCCS local network project may contribute something to the solution of this problem. (See also
Protocols.)

Penetration Studies

Every serious attempt that we know of to penetrate a particular system has succeeded. Informa-
tion on penetration studies applied to the systems listed in the tables is sparse. A penetration study of
VM/370 (CP/67) done by SDC did conclude that it was significantly more difficult to break into that
system, which is based on virtual machines, than into some others.

Protocols

See Network Architectures. The major problem is how to limit the unauthorized information flow
possible in the control information, which often has to be transmitted in the clear (unencrypted).

Risk Assessment

A risk assessment attempts to characterize, within a specific installation, the assets of a system,
the threats to them, and the system's vulnerabilities to those threats. Risk assessments of computer
installations are being conducted at a number of installations. Since risk assessments consider condi-
tions at a specific site, the most general assessment that can be done by the developer is an analysis of
the vulnerabilities of the system in general. Vulnerability analyses may be classified, since they may
reveal exploitable system flaws. There has been an example risk assessment conducted on GUARD,
partly to evaluate risk assessment methodology. Of the completed systems, AFDSC MULTICS and
ADEPT-50 are the most likely to have had such analyses done. A risk assessment of SHARE-7 has
been conducted. Presumably, a vulnerability analysis will be done for AUTODIN II. The most difficult
problem in any risk assessment is what value to attach to the data at risk.

Security Models

Of the projects listed in the tables, the MITRE kernel, MULTICS security enhancements and ker-
nel, KSOS, SCOMP, GUARD, MME message systems, AUTODIN II, KVM/370, and SACDIN, all are
based on the Bell and LaPadula model. The UCLA kernel implemented underlying controls for capa-
bilities, with the specific Bell and LaPadula rules implemented in a "policy manager" module. This uni-
formity seems to be caused more by government direction than by superiority of the model. In fact, it
is now being recognized that models that can more closely reflect applications are necessary, particularly
in dealing with data bases. Still, the Bell and LaPadula model (and its restatement in terms of informa-
tion flow) is the baseline for the field (see Ref. 2 for a detailed discussion).

9

C. E. LANDWEHR

Specification Techniques

Parts of several of these systems have been specified formally. Systems and tools employed
include SPECIAL/HDM/Boyer-Moore Theorem Prover (SRI), Gypsy (University of Texas), Ina
Jo/ITP (SDC), and AFFIRM (ISI). There is evidence (e.g., KSOS and SCOMP) that programmers can
write formal specifications (after some training) and that some errors (security flaws) are exposed by
the use of automated tools to check (verify) the specification. However, the major benefits for security
seem to be that other humans (system developers or reviewers) can understand what the specification
says and find flaws (security or other) by reviewing the specification manually, despite the often forbid-
ding appearance of a formal specification. This finding is partly a comment on the state of the tools
available for formal specification and verification. Evidence from these projects is that the tools
currently available, though improving, are best characterized as research vehicles, not production-
quality aids to software development.

Verification Techniques

Most of the comments on specification techniques apply here as well. Verification of security
properties of top-level specifications seems to be within (but fairly near the edge of) the current state of
the art. Verification of actual code (in some compilable language) is still very hard for the available
tools and usually requires considerable human intervention. Despite apparent progress in research in
this area, the present systems are some distance from practical use as system development tools. The
benefits to be had from attempting verification seem to be software-engineering ones: it forces the
designer/implementor to think hard about what he is doing and leaves an extensive documentation trail
for others to review.

Virtual Machines

The KVM/370 is the prime example of a secure system based on this approach; SHARE-7 is
another example. This organization helps in isolating individual users at separate security levels, and in
systems where isolation is all that is required, it is the best available approach. However, experience
indicates that such isolation is rarely what is really needed; if extensive communication between users
and across security levels is required, this organization can get in the way.

Virtual Memory

This is one tool for organizing computer systems that it would seem foolish for a developer of a
new secure system to forgo. A persistent problem with many of the efforts listed in the tables has been
the small virtual address space of the PDP- II and its approach toward virtualization of devices.

ADVICE FOR THE DEVELOPER

What are the lessons for the developer of a new system? It is important to distinguish between
technologies that are available and useful today and research approaches that appear promising but are
unproven. There is, at present, no proven technology that can assure that the system being developed
will be secure. Those techniques that have been tried have met with varying degrees of success. It is
difficult to give objective measures for these degrees of success because there are no good measures
that can be applied to rank the security of various systems.

Listed below are the best available approaches for incorporating security into a system under the
stated constraints. Each is listed under the appropriate phase of the system development cycle. Many
of these simply represent good system design and software engineering practices.

10

NRL REPORT 8554

Requirements

Determining the requirements for security in a system is crucial, because they will affect the
entire structure of the system software. Security is not an "add-on" feature. It must be incorporated
throughout a system, and the statement of security requirements for a system should reflect this fact.

There are at present four different modes of operation for which systems processing classified
information can be accredited:*

Dedicated' All system equipment is exclusively used by that system, and all users are cleared
for and have a need to know for all information processed by the system;

System high: All equipment is protected in accordance with requirements for the most classified
information processed by the system, and all users are cleared to that level, but
some users may not have a need to know for some of the information;

Controlled: Some users have neither a security clearance for nor a need to know for some
information processed by the system, but separation of users and classified material
is not essentially under operating system control;t and

Multilevel Some users have neither a security clearance for nor a need to know for some
information processed by the system, and separation of personnel and material is
accomplished by the operating system and associated system software.

Definitions of these modes are provided in DoD Directive 5200.28 [3].

A Request for Proposal (RFP) should state what modes of operation are needed for the system
initially and whether future operation in other modes is planned. However, if the requirement for
security is isolated and stated baldly ("The system shall be secure"), bidders may view the security
requirement separately from other system requirements and so may propose infeasible solutions.

The system architect should consider the system's security requirements as part of its functional
requirements from the start. In this way intelligent trade-offs can be made where required and a
coherent design, integrating the needs for functionality and security, can be obtained. If this procedure
is not followed, bidders may claim that they can build the system only to discover that requirements
conflict when they are well into the development.

One illuminating example is that of the military database system that normally contains only
unclassified data, but during crises some of its contents may be classified. Because the requirement to
handle classified data was not implemented initially, its users must either finance a duplicate system,
attempt to retrofit security to the existing system, or operate in a manual mode during crises.

One way the system architect can integrate the security requirements with the functional require-
ments explicitly is to specify the flows of information (especially classified information) that will occur
in the system and the flows of authorization. Particular places to look for problems are in the user
interface, in any operations that cause information to flow into or out of the system, and any places
where the classification of information could be changed.

'Additional constraints may be placed on systems processing compartmented information.

t"Essentially" is not further defined in the official documents. In practice, controlled mode seems to be applied to systems that
would be considered as operating in a multilevel mode, but which bar users with clearances below some specified level from hav-
ing access to the system.

11

C. E. LANDWEHR

Trade-offs in the provision of security should be identified and assessed as early as possible. For
example, physical controls and computer hardware and software controls are alternative techniques for
protecting information stored on computers. If they are not assessed as alternatives early in the system
development, however, physical security will be the de facto choice, because it is much easier to provide
after the fact than hardware and software controls. Unfortunately, physical controls frequently restrict
functionality more than comparable software controls.

Within the software and hardware design there will be trade-offs as well. Many of these only need
to be addressed in the design, but the system requirements should provide guidelines on such matters
as the granularity of protection needed, critical pieces of information that may require special protec-
tion, acceptable bandwidths for leakage channels, and so on. The designers will be forced to make
decisions on these questions whether or not guidelines are provided; it is in everyone's interest that
these decisions be informed, not ad hoc.

Design

For development of a multilevel secure system, security must be considered early and often dur-
ing the design phase. As with requirements, it cannot be added to an existing design. The most prom-
inent design strategy at present is the security kernel approach, but it is not a proven technology.
There is evidence that use of a security kernel can impose intolerable functionality or performance bur-
dens. Improved hardware may ease these burdens somewhat, but there are still substantial questions
about the viability of this approach. At present, a system designer would be well advised to do the fol-
lowing:

* Study the functions of the system, focusing on requirements for the flow of classified information
.and the interface with the user. Specifically, note under what conditions sensitive information is
disclosed or modified, has its classification changed, or enters or leaves the system. Include
mechanisms to audit the use of system functions that may leak information.

* Construct a simple model of the flow of information and authority within the system. The model
need not be formal, but should be brief, precise, and simple enough to be understood by both the
implementors and the users of the system.

* Keep the model and the design consistent. If changes are required to either, make corresponding
changes to both.

* Develop a hierarchical set of design specifications. Include a top-level specification that reflects the
basic functions of the system and the information-flow model, and a program specification that is
sufficiently detailed to allow outside reviewers (and new personnel) to review the code structure
and to assess the information flows and authorization mechanisms it will have. As the design is
created, have it reviewed at regular intervals both by the potential users and by individuals
knowledgeable in computer security. KSOS, SCOMP, the SDC Communications Kernel, and
other projects have used this approach with good results. Use of formal specifications may be
helpful, but their use should be contingent on training of the implementors to the extent that
they are competent to read and update them. The software tools presently available for formal
specification and verification are still primarily research vehicles, although this situation may
change within a few years.

* Choose hardware that reduces security problems. Generally, hardware that provides good
mechanisms for isolating different computations, simple and efficient ways to control the flow of
information between isolated contexts, and a uniform way of treating different kinds of objects is
desirable. The following features will help in the implementation of secure systems: virtual
memory, with controlled access to the mapping registers; a device interface that offers the possi-

12

NRL REPORT 8554

bility of a uniform treatment of memory, files, and devices; and the ability to change addressing
contexts rapidly. Several machine states that restrict access to critical portions of the instruction
set are not required if all accesses to data are mediated by the virtual memory mechanism, but
they can be used as another way of protecting critical operating system data (e.g., the contents of
the mapping registers).

Implementation

The implementation should employ a language for which there is a well-understood, reliable com-
piler. There are some .languages (e.g., Gypsy, Euclid) that have been designed with the intention that
programs written in them be verified and others (Pascal, Ada) for which "verifiable subsets" have been
proposed. Experience to date indicates that a reliable compiler and the disciplined use of a
conventional language are preferable to a relatively untested compiler and a "verifiable" language.
Assembly language should be avoided whenever possible.

If it becomes necessary for the code to deviate from the specifications, the specifications should
be updated in parallel with the code changes. Good coding practices benefit the security of the system
as well as its reliability and maintainability. Careful attention should be paid to configuration control.

Verification and Testing

Automated verification that a given formal top-level specification obeys the Bell and LaPadula
security model is within the state of the art, but it is far from routine. Experience shows also that vir-
tually all applications require functions that violate the Bell and LaPadula model. Thus, if the
specification is Verified to enforce this model,?the implementation will deviate from it in some respect.
At present, automated verification of the security properties of substantial amounts of code is beyond
the state of the art. These techniques hold promise for the future, but there is substantial risk in
employing them in a system development that starts next week. The verification of specific properties
of a specification or small pieces of code can be done by hand or, if written in suitable languages, with
machine assistance. Currently, the principal benefit of doing so is that the exercise focuses a good deal
of attention on the specification or code at hand and requires the doer to think the problem through
very carefully. A few, but not many, security flaws in systems have been found through use of
verification techniques.

Thorough testing continues to be a necessary partner to careful design and implementation of sys-
tems to be operated in a multilevel secure mode. When test plans are constructed, specific attention
must be given to testing the security provisions of the system. If possible, the developer should
arrange for penetration tests and estimate the bandwidths of leakage channels that cannot be eliminated.

Operation

From the standpoint of security, the important aspects of system operation are the controls over
changes to the system software and configuration and the conscientious use of the security mechanisms
provided by the system. Configuration control is of central importance in the operation of a multilevel
secure system, and the design of the system itself should assist in this task. The maintenance of vari-
ous levels of specification, good coding practices, and use of high-level languages all help.

One often neglected aspect of operations is the monitoring of the audit trails that are routinely
collected: usually they are too voluminous (and boring) for us to expect a person to do a reasonable
job of checking them. Automated tools for this purpose need close attention, since defeating the tools
becomes equivalent to defeating the auditing controls.

13

C. E. LANDWEHR

SUMMARY

There is no philosopher's stone to turn a given system (or system design) into a multilevel secure
version of the same system. The advice given above boils down to:

* Consider security requirements in conjunction with the functional requirements of the system.

* Think about security throughout the design and implementation of the system.

* Use the best available software-engineering technology.

* Be skeptical. Many "modern" ideas do not yet work.

ACKNOWLEDGMENTS

I thank Dave Parnas for asking the question that inspired this report. The information on which
the report is based came from individuals too numerous to mention, but in whose debt I remain. Dave
Parnas and Connie Heitmeyer provided reviews of earlier drafts of the paper that led to significant
improvements in it, and H. 0. Lubbes of NAVELEX provided encouragement and support. The
responsibility for all opinions (and any remaining errors) in the paper is mine.

REFERENCES

1. Software Engineering Principles, Notebook for NRL Software Engineering Course, 1980, available
as NTIS AD-A087-997.

2. C.E. Landwehr, "Formal Models for Computer Security," ACM Computing Surveys 13 (3), 247-
278 (Sept. 1981).

3. DoD Directive 5200.28 of 18 Dec 1972, first amendment, change 2, 29 April 1978.

14

Appendix A
COMMENTS ON SECURE-SYSTEM DEVELOPMENTS

PROJECTS COMPLETED

ADEPT-50: This system was the first to be based on a formal model of security. This model (called
the High Water Mark model) allowed write-downs (with authorization) but restricted read-ups.
Installed in the Pentagon (AFCP, NMCSSC), CIA, and SDC, it ran for several years. It was
certified for system-high operation only.

MULTICS: The MULTICS operating system (and the MULTICS hardware) attempted to pay a good
deal of attention to protection, if not to security. The most significant innovation in this
respect was probably the concept of rings of protection, in which inner (lower numbered) rings
are more privileged than outer rings. The architecture generalized the concept of a two-state
(supervisor and user) machine to that of an n-state machine, with one state for each ring. For
the original MULTICS machine, n = 16. In practice, nearly all of the original MULTICS
privileged software was in the innermost ring. This result was probably partly due to the fact
that handling ring crossings was initially done in software, making it expensive (time consum-
ing). Later, hardware for ring crossing was added and there were efforts to distribute the
operating system components across several rings. These efforts were not very successful.
MULTICS also included an implementation of access lists for files (segments) and a hierarchi-
cal file system. Verification and security models were not considerations in the MULTICS
development. Performance of MULTICS was poor for several years, but gradually improved to
the point that Honeywell now markets MULTICS as a supported product. The current
hardware is the Honeywell 6180.

AFDSC MULTICS (MULTICS Security Enhancements): The Bell and LaPadula model was applied to
MULTICS - MULTICS objects had classifications attached to them and the *-property and
simple security condition were enforced. No effort was made to isolate the security-relevant
code or to restructure MULTICS into a kernel. The system was installed in 1974 at the Air
Force Data Services Center in the Pentagon and has been certified to operate with both TS and
S data and with some users cleared only to S.

MULTICS Security Kernel: Following the MULTICS security enhancements, this was an effort to see
if the MULTICS operating system could be restructured as a security kernel and supporting
software. Studies were done by Honeywell and MITRE separately. At the same time, MIT
studied the MULTICS supervisor to see how much of it could be moved out of Ring 0. The
MIT study indicated considerable reduction of Ring 0 code was possible without complete re-
structuring of the system as a kernel. Also, MIT identified potential performance problems
with kernel. This kernel was never built.

MITRE Brassboard Kernel: This was a prototype security kernel developed for a PDP-11. Kernel
operations were based on the models constructed by Bell and LaPadula. Performance was poor,
but good performance had not been an objective of the project. Both top-level and low-level
specifications were written, and extensive manual verification of the kernel operations and the
correspondence between specification levels was performed.

MITRE Secure UNIX: When MITRE tried to put a UNIX emulator on top of the brassboard kernel,
they found that the match was so poor that a new kernel was needed that provided functionality

15

C. E. LANDWEHR

more suited to UNIX. Formal specifications were written (referred to as "Parnas"
specifications), but no verification was done.

UCLA Data Secure UNIX: This was another prototype security kernel for a PDP-11 (parallel to
MITRE's), but it was carried much further than the MITRE implementation effort. Its
architecture was based on an implementation of "capabilities" for the PDP-11. A prototype was
developed and fitted with a UNIX user interface, but performance was very slow. A separate
security model was developed for this prototype, based on "data security"; the Bell and LaPa-
dula model could be enforced by a policy manager module running outside the kernel. A
strong effort to keep the kernel small resulted in a fair amount of code outside the kernel that
did have some security-relevant functions (e.g., the policy manager). Hence, comparing code
sizes of the UCLA kernel and others must be done carefully. Much effort was expended on
formal verification, in cooperation with ISI and the XIVUS theorem prover. The effort seems
to have been hampered initially by the lack of a high-level specification of the system. This
lack seems to stem from the philosophy that the only verification that counts is verification of
the lowest level assembly code. Ultimately, the verification of about 35 to 40% of the kernel
code was claimed as a feasibility demonstration that the entire kernel could be verified, given
sufficient resources.

Message Systems for Military Message Experiment (MME): Three message systems were developed in
competition: Hermes, by BBN; SIGMA, by ISI; and MIT-DMS, by MIT. The ISI system won
the competition and was used in the MME. SIGMA was designed as though it were running on
a security kernel, although the system underneath it was not in fact a kernel-based system. A
"trusted job" was introduced to allow required operations that violated the Bell and LaPadula
model. SIGMA required users to confirm activity that could cause insecure information flows.
In practice, most users confirmed every operation requested without understanding or thinking
about the implications.

SHARE-7: This Navy system developed at FCDSSA, and implemented on the AN/UYK-7 computer,
is in operational use at several FCDSSA installations. The system was originally designed as a
virtual machine architecture, to provide multiple AN/UYK-7's to users. More recently,
security-kernel terminology has been used to describe its security structure. It was written in
CMS-2. It is now undergoing security certification procedures for operation in the controlled
mode. (Originally, certification for multilevel mode had been sought.) It is one of the first
systems the Navy has nominated for evaluation by NSA's Computer Security Evaluation
Center.

DAMOS: This is an operating system developed by the Danish company Christian R6vsing (CR) to
run on its own. CR80 computer. The computer and the operating system are described as
capability-based, and the operating system includes implementations of a security kernel and
trusted processes. These concepts seem to have been developed by CR independent of US
efforts in security kernels. DAMOS is a successor to an earlier system, AMOS, and is intended
to provide fault tolerant operation in communication-system applications. Systems in which
CR80s are or will be used include NICS TARE, a NATO system for automating paper-tape
relay operations; FIKS, a Danish DOD system for message, packet, and circuit switching; and
CAMPS, a NATO-SHAPE message system for communication centers.

PROJECTS UNDER WAY

KVM/370: This is an SDC project to install a kernel underneath the IBM VM/370 operating system (a
virtual machine-based system). Presumably, the system is near delivery. It has been brought
up on IBM and Amdahl hardware. Performance is claimed to be acceptable, though
significantly slower (approximately by half) than standard IVM. This seems to be the only

16

NRL REPORT 8554

current project dealing with the complexities of a large-scale time-sharing system (though some
argue that this is really a small system running on large hardware). If successful, it will pri-
marily provide multiple virtual machines at different security levels, with restricted communica-
tion between machines handled via shared "minidisks."

KSOS (also known as KSOS-11): This represents an attempt to build a commercial prototype kernel-

based system on a PDP-1 1/70. An emulator on top of the kernel was to provide a UNIX inter-
face to users. Full verification of the security properties of the kernel top-level specification
(TLS) (written in SPECIAL) and demonstration proofs of correspondence of code (written in
MODULA) to specifications were planned. The contract with FACC was terminated in
December 1980. Performance with the UNIX emulator and user software layers was poor.
Verification of the kernel TLS (using the Boyer-Moore theorem prover at SRI) seems to have
been successful. The code proof demonstrations were done by hand. The kernel by itself may
prove useful as a base for applications, but the emulator ended up duplicating kernel functions
and performed poorly in combination with it. The Navy has funded Logicon to look into build-
ing the GUARD application directly on the kernel.

SCOMP (Also known as KSOS-6): This project was intended to parallel KSOS-11 but uses Honeywell
Level 6 hardware. The U.S. government funded development of a hardware box called the
Security Protection Module (SPM) and the kernel software specification and development. The
SPM monitors transfers on the bus without CPU interference, providing faster mediation and
enhanced virtual memory/capability structure. The kernel and hardware are nearly complete;
kernel performance on the hardware is being tested now. Original plans called for the develop-
ment (funded by Honeywell) of a UNIX emulator, as in KSOS-11; it now appears that only a
minimal operating system interface, containing a simple file system, will be built. Specification
of the kernel was done in SPECIAL, with verification using SRI tools. The verification was
substantially completed, but a few modules proved too large to be passed through the SRI tools.
No code proofs are planned. The kernel is coded in UCLA Pascal, compiled via Pascal-to-C
(UCLA). The C-to-Level-6 compiler was built by DTI. Trusted processes are to be specified in
Gypsy, but the current contract does not cover verification of them.

GUARD (ACCAT, LSI): ACCAT GUARD (the original version of GUARD) provides a "trusted"
path between two database systems or networks that operate at two different security levels. It
supports operators who monitor requests made from the low database to the high database and
sanitize the responses returned. The trusted process that performs downgrading was specified in
Gypsy. GUARD was initially planned to run on top of the KSOS UNIX emulator, but it is now
being reevaluated to see if it can run directly on the KSOS kernel. A prototype version was
developed to run on an unmodified UNIX. LSI GUARD is an attempt to implement the
ACCAT GUARD functions directly on the hardware of a DEC LSI-1 1 (without a kernel) in
Euclid. It allows only a single operator, while ACCAT GUARD can have multiple operators.

GUARD (FORSCOM, RAP, KAIS): Each of these GUARDs is designed to act as a filter between a
terminal and a host computer rather than as a query monitor between two databases.
FORSCOM GUARD was built by Logicon based on modifications to ACCAT GUARD, and it
is being tested by the Army to filter traffic between several WWMCCS terminals and a single
WWMCCS host. The system requires a single human operator, who screens traffic for all of
the terminals. The FORSCOM GUARD programs (unlike those of ACCAT and LSI GUARD)
include substantial information about the semantics of the likely user activities on the
WWMCCS host to enable more accurate filtering. FORSCOM GUARD was built on top of
standard UNIX because KSOS was not available. Performance of the system was adequate for
the Army to use it in a test mode, but it brought some user complaints.

17

C. E. LANDWEHR

SDC Communications Kernel: This is a project to modify the UCLA prototype PDP-1 1 kernel for use
in communications applications (packet switching, etc.). The code is written in UCLA-Pascal
and compiled using the UCLA Pascal-to-C translator. The kernel was heavily modified and
tailored to the application; no operating system emulator was used. Performance seems satis-
factory at this point, but some performance tests are still pending. Pascal-to-C is not recom-
mended for further use; it takes about 5 minutes of unloaded PDP-11/70 time to compile each
of 60 submodules, or 5 hours for the entire system. The requirement for verification of the
specification was dropped early in the project; a requirement for "verifiable" code motivated the
choice of Pascal-to-C, but the only verification actually done has been manual examination of
the specification for information channels.

AUTODIN II: This is a packet-switched communication network for military use, provided by DCA.
Western Union is the prime contractor, with Ford Aerospace (a different group from the KSOS
group) and Computer Sciences Corporation as software subcontractors. The AUTODIN II RFP
called for a kernel-based system for packet switching, but without adequately defining what a
kernel is or what the requirements for formal specification and verification were. There have
been many problems in its development, including a c)cr fight over the definition of "formal
specification." Eventually, FACC wrote the code an , ankDfo some extent verified
(using Ina Jo and ITP), the specification after the fact. The system has apparently passed its
security and system tests, but the date of its availability to users is still uncertain.

SACDIN: Originally named SATIN IV, this was to be a packet switching net for SAC, but the Air
Force was directed to use AUTODIN II for the network backbone. The SATIN IV RFP was
thought to be better (with respect to security) than AUTODIN II; the SACDIN development
is somewhat less ambitious than the original plan. IBM is working as a subcontractor to ITT,
building a kernelized system. A top-level specification was written and verified, but the imple-
mentation is in assembly language (for IBM Series 1 computers) and no code proofs are
planned. No mapping between the specification and the code has been constructed.

COS/NFE: This DCA project with DTI is an effort to build a secure network front end for WWMCCS
using the DTI-proprietary HUB architecture (HUB a trademark of DTI). SDC is a subcontrac-
tor to DTI for specification and verification, using Ina Jo and ITP. According to DTI, the HUB
executive is a security kernel. Top-level and second-level specifications for the HUB have been
written, and security criteria for it have been developed and proven to hold for the
specifications (both levels). The security criteria are based on maintaining a strict separation of
"security level sets." The HUB structure includes many modules that will process data at
several security levels; these are termed "trusted" modules. Whether formal low-level
specifications will be written and verified against the code is still an open question. The whole
system is intended to be small, fast, and application-driven. It is being written in Pascal for
PDP-1 1 architecture. An early specification was written in Euclid.

GNOSIS: This is a new operating system built by Tymshare, claimed to be based on an implementation
of capabilities for IBM 370 architecture. No formal specification or verification was done, but
an important motive in developing the system was to be able to protect timesharing customers'
data from theft, so much attention was paid to protection (though not to military security).
The system is in operational use by its developers, but is not commercially available as yet.

PSOS: An initial specification for a "Provably Secure Operating System" (PSOS) was written by SRI in
the mid to late 1970s. This document was used as part of a product description for a two-phase
contract finally awarded in early 1980 to Ford Aerospace as prime contractor for the software,
with Honeywell as a subcontractor, primarily to provide software, but also to provide some help
with verification. The goal is a moderate- to large-scale, general purpose, verified (or
verifiable) computer system, not kernelized. The first phase is for a design only; the second

18

NRL REPORT 8554

phase, if awarded, will be for development. The plan is to build a capability-based system, with
proofs of the entire OS specification. It is unclear whether code proofs will be done. -
Honeywell bid 32-bit minicomputer hardware that looks like a next-generation Level 6, with
SPM (see SCOMP). Unsuccessful bidders were Burroughs (software -and hardware) and
SDC/Univac. The phase-one contract was terminated in May, 1981; the fate of the second
phase (for construction) is unknown.

Message Flow Modulator: A flow modulator is a system that receives messages from a source, filters
out certain messages, transforms messages that pass the filter, and transmits the resulting
messages to a sink. A flow modulator with a null transform is like a GUARD, and a flow
modulator with a null filter and an encryption algorithm for a transform is like a standard
encryption device. Don Good's group at the University of Texas has developed a simple flow
modulator using Gypsy and the Gypsy tools, and has proven some properties about the system.
Present work on the system is aimed at applying it to a Navy system.

Secure Archival Storage System: The goal of this project is to apply security kernel technology to a net-
work of microprocessors that store multilevel files. Ultimately, SASS would provide a shared,
secure archival storage for a variety of host computers. The initial implementation is on a sin-
gle Z8000 processor and is being carried out by Roger Schell, Lyle Cox, and a number of grad-
uate students at the Naval Postgraduate School. Although there are no plans to verify the
design or the implementation, and the design seems not to have been specified formally, the
authors consider the security kernel to be "verifiable."

PROJECTS PLANNED

GUARD (RAP, KAIS): RAP GUARD is to be used by NASA in a shuttle planning system between
the terminals and other network components. MITRE is working on the design of this system
and a similar one for the Korean Air Intelligence System (KAIS). In each of these three sys-
tems, the GUARD component includes some knowledge about the activities the user (at the
terminal) is performing on the host, as in FORSCOM GUARD. (e.g.: Was the last command
an editing command that has a stereotyped response or a database query that could provide
significant information to the user?) They are intended to operate between a single terminal
and a single host, and are not intended to require an operator. They are intended to filter out
classified material of inappropriate levels without human intervention.

WWMCCS Local Network: The evolutionary path of WWMCCS and WIN is intended to lead to a set
of local networks, interconnected by packet switching (AUTODIN II) trunks. (All of this is
called the WWMCCS Information System [WIS] architecture.) SDC presented three scenarios
for a trusted/multilevel secure local network to a committee convened by DCA in February
1981. The goal was to identify which scenario would be realistic to specify in an RFP to appear
in FY82/83. The most conservative scenario presented, which involved separate local networks
at different security levels, connected by a GUARD-like security filter box, was recommended.
Additional studies of the architecture are to be conducted.

MITRE MLS Terminal: This project is investigating the practicality of dealing with multilevel objects
by assigning a separate microprocessor to handle each security level, with a "trusted feedback
monitor" to coordinate their activities. A design has been produced based on a word-processing
application, and there are plans to implement it.

MMS/TDMS: This is an NRL project (funded by NAVELEX) to design a prototype Military Message
System viewed as a Trusted Data Base Management System. A contract was let to SDC to
develop design specifications and to work on the proposed MMS security model. BBN has also
participated.

19'

C. E. LANDWEHR

MITRE DBMS Kernel: This is a MITRE project to specify and implement a kernel designed specifically
to support a database. The SCOMP (Honeywell Level 6 with Security Protection Module
[SPMD) is to be the hardware base, and the MRS database management system is the most
likely to be used.

NON-U.S. WORK

Germany: EIFEL is a German air traffic control network (perhaps also command and control) that is
due for a new generation of hardware and software (EIFEL 2). The German equivalent of
MITRE was (in 1980) trying to write a specification for the system that included multilevel
secure operation. Siemens, Telefunken, and others were also investigating the problem as pros-
pective bidders.

Canada: The Canadian Maritime Command is apparently attempting to procure a system that may have
a multilevel security requirement.

England: There is some interest in the security problem at the Royal Signals and Radar Establishment
(RSRE), Malvern. At last report their central interest was control flow analysis of programs
and low-level code verification.

Denmark: See DAMOS (p. 16)

20

C:

r'

Appendix B
BIBLIOGRAPHY

The following list is intended to give the interested reader pointers to further information about
each of the systems listed in this report. It is not intended to be a complete list of references on these
systems. Although we have tried to include references that are generally obtainable, several of these
projects are documented only in technical reports whose availability cannot be guaranteed.

At this writing, the single best reference for current work promises to be the Proceedings of the
Fourth Seminar on the DOD Computer Security Initiative Program, held at the National Bureau of Stan-
dards in August 1981. Some of the "papers" in these proceedings, however, are only copies of the
viewgraphs used in oral presentations. These proceedings should be available from the Office of the
Assistant Secretary of Defense (OASD) for Command, Control, Communications, and Intelligence
(C31), Information Systems, Room 3B252, Pentagon, Washington, DC 20301.

References are given in the order that the systems are listed in Tables 1 to 3.

System Reference

ADEPT-50 C. Weissman, "Security Controls in the ADEPT-50 Time Sharing System,"
Proceedings, 1969 AFIPS Fall Joint Computer Conference, AFIPS Press, Arling-
ton, Va., Vol. 35, pp. 119-133.

MULTICS 0. Organick, The MULTICS System: An Examination of Its Structure, MIT
Press, Cambridge, Mass., 1972.

MULTICS J. Whitmore et al, "Design for MULTICS Security Enhancements," ESD-TR-
Security 74-176, Air Force Electronic Systems Division, Dec. 1973. For information on
Enhance- security mechanisms available to users of the current commercially available
ments MULTICS, see MULTICS Programmers' Manual Reference Guide, Honeywell

#AG91, Revision 2, Honeywell Information Systems, Inc., Waltham, Mass.,
Mar. 1979.

MULTICS W.L. Schiller, "Design and Abstract Specification of a MULTICS Security Ker-
Security nel," MITRE ESD-TR-77-259, MITRE Corp., Bedford, Mass., Nov. 1977
Kernel (NTIS AD A048576).

MITRE W.L. Schiller, "Design of a Security Kernel for the PDP-11/45," MITRE
Brassboard MTR-2709, MITRE Corp., Bedford, Mass., June 1973.
Kernel

MITRE K. Biba, J. Woodward, and G. Nibaldi, 'A Kernel Based Secure UNIX Design,"
Secure MITRE ESD-TR-79-134, MITRE Corp., Bedford, Mass., May 1979.
UNIX

UCLA G.J. Popek, M. Kampe, C.S. Kline, A. Stoughton, M. Urban, and E.J. Walton,
Data Secure "UCLA Secure UNIX," in Proceedings, AFIPS National Computer Conference,
UNIX AFIPS Press, Arlington, Va., 1979, Vol. 48, pp. 355-364.

21

C. E. LANDWEHR

Military S.H. Wilson, N.C. Goodwin, and E.H. Bersoff, "Military Message Experiment
Message Final Report," NRL Memorandum Report 4456, Naval Research Laboratory,
Experiment Washington, D.C., in press.

SHARE-7 "SHARE 7/Security Design, 1 February 1980," Fleet Combat Direction Systems
Support Activity (FCDSSA), San Diego, CA 92147. (This is an informal docu-
ment, not an officially published report.)

DAMOS A. Hvidtfeldt and A. Smitt, "Manufacturers' Efforts in Computer Security:
Christian R6vsing," in Proceedings of the Fourth Seminar on the DOD Computer
Security Initiative Program, Aug. 1981, in press.

KVM/370 B.D. Gold, R.R. Linde, R.J. Peeler, M. Schaefer, J.F. Scheid, and P.D. Ward,

"A Security Retrofit of VM/370," in Proceedings, AFIPS National Computer

Conference, AFIPS Press, Arlington, Va., 1979, Vol. 48, pp. 335-342.

KSOS E.J. McCauley and P.J. Drongowski, "KSOS: The Design of a Secure Operating
System," in Proceedings, AFIPS National Computer Conference, AFIPS Press,
Arlington, Va., 1979, Vol. 48, pp. 345-353.

SCOMP C.H. Bonneau, "Secure Communications Processor Kernel Software, Detailed
Specification, Part I, Rev. G," Honeywell Inc., Avionics Division, St. Peters-
burg, Fla., 1981.

GUARD D. Baldauf, "ACCAT GUARD Overview," MITRE MTR-3861, MITRE Corp.,
(ACCAT, Bedford, Mass., Nov. 1979.
LSI)

S. Stahl, "LSI GUARD System Specification (Type A)," MITRE MTR-8452,
MITRE Corp., Bedford, Mass., Oct. 1981.

GUARD "FORSCOM Security Monitor Computer Program Development Specification
(FORSCOM, Type B-5," Logicon, Inc., San Diego, Calif., Feb. 1981.
RAP)

SDC T. Golber, "The SDC Communication Kernel," in Proceedings of the Fourth Sem-
Comm. inar on the DOD Computer Security Initiative Program, Aug. 1981, in press.
Kernel

AUTODIN S. Bergman, "A System Description of AUTODIN II," MITRE MTR-5306,
II MITRE Corp., Bedford, Mass., May 1978. For a short summary of AUTODIN

II, see I. Lieberman, "AUTODIN II: An Advanced Telecommunications Sys-
tem," Telecommunications 15 (5), 43-48 (May 1981).

SACDIN "System Specification for SAC Digital Network (SACDIN)," ESD-MCV-1A,
ITT Defense Communications Division, Nutley, New Jersey, 1978.

COS/NFE S.R. Bunch, G. Grossman, and D.C. Healy, "Software Design Specification of
the COS/NFE HUB Executive, Release 2," Digital Technology Incorporated,
Champaign, Ill., Dec. 1980.

GNOSIS "GNOSIS External Specification," 1st Ed., Tymshare, Inc., Cupertino, Calif.,
Mar. 1980.

22

NRL REPORT 8554

P.G. Neumann, R. Boyer, R.J. Feiertag, K. Levitt, and L. Robinson, "A Prov-
ably Secure Operating System: The System, its Applications, and Proofs," 2nd
Ed., CSL-116, SRI International, Menlo Park, Calif., May 1980.

Message
Flow
Modulator

Secure
Archival
Storage
System

RAP
GUARD

KAIS
GUARD

WWMCCS
Local Net-
work

NRL
MMS/TDMS

MITRE
DBMS Ker-
nel

MITRE
MLS Ter-
minal

EIFEL 2

Canadian
Maritime
Command

D.I. Good, "Message Flow Modulator Status Report, April, 1981," available
from Naval Electronics Systems Command, Code 8144.

R.R. Schell and L.A. Cox, Jr., "A Secure Archival Storage System," in Proceed-
ings, FALL COMPCON, Sept. 1980, pp. 679-682.

See GUARD, FORSCOM. MITRE is currently working on a specification for
this system that will probably be similar to FORSCOM GUARD.

M.H. Cheheyl, "KAIS Security Interface System Specification (Type A) ,"
MITRE WP-23684, MITRE Corp., Bedford, Mass., July 8, 1981.

L. Bernosky, "WWMCCS Information System (WIS) Computer Security," in
Proceedings of the Fourth Seminar on the DOD Computer Security Initiative Pro-
gram, Aug. 1981, in press.

C. Landwehr, "Security Model for a Military Message System," in Proceedings of
the Fourth Seminar on the DOD Computer Security Initiative Program, Aug. 1981,
in press.

R.D. Graubart and J.P.L. Woodward, "A Naval Surveillance DBMS Security
Model," MITRE MTR-8475, MITRE Corp., Bedford, Mass., Nov. 1981.

D. Solomon, "Processing Multilevel Secure Objects," in Proceedings IEEE 1981
Symposium on Security and Privacy, Oakland, Calif., Apr. 1981, pp. 56-61.

Lt. Col. Cerny, "ADP-Security Requirements for EIFEL 2," in Proceedings of
the Second Seminar on the DOD Computer Security Initiative Program, Jan. 1980,
pp. K-1 - K-32. (May be available from OASD (C3 f), Information Systems,
Room 3B252, Pentagon.)

No reference known to the author.

23

PSOS

c:

2'
A-
r1

:rv.

<.l

rat

C::

