REQUIREMENTS FOR CLASS A1 SYSTEMS
AND MAJOR DIFFERENCES BETWEEN
DIVISION A AND DIVISION B SYSTEMS

Dr. Carl Landwehr
Naval Research Laboratory

I am not an author of the Orange Book (I work for the
Naval Research Laboratory, not for the Computer Security
Center) so my view is that of a consumer of the Criteria
rather than a producer. I look at it as something that [
might employ sometime if I were to attempt to build a
secure system. So, I've tried to aim this presentation
towards people like myself who may try to use the Criteria.

The crucial fact about Division A is that A stands for
Assurance. That's what the A level is all about. In my
view, it requires a higher level of assurance than any of the
other divisions shown on Slide |.

As Sheila mentioned, the categories of criteria that are
listed in the document are four: Security Policy, Account-
ability, Assurance, and Documentation (at least at the A
level, there is Documentation) (see Slide 2). In fact, the A
level levies no new requirements on the first two of those
categories. The functional requirements for a level-A
system are identical to those requirements for a level-B3
system that Dan has just described. So, you might say,
"I've got a B3 system. Can I just change it into an A
system by implanting a little more assurance - more tests,
and a little extra documentation?” The answer is, "No."
In fact, the decision to meet the level-A criteria affects the
entire life cycle of a system, because those requirements,
even though they do not change the functions of the
system, have to do with how that system is developed.

I've tried to indicate on Slide 3 a simple view of the life
cycle of a system: starting with requirements specification,
then the top level or system specification, detailed
specification, implementation, testing, presumably, and
then operation. The notations along the sides show where
level A has an affect. In the first place, as you can see, it
requires more strict configuration control. Configuration
control gets pushed back all the way to the design phase.
You must have configuration control if you want a level-A
system; you have to show that the control was in place
during the design and was applied to the design documenta-
tion. I've noted a security model on the right-hand side
because that's required. As Dan noted, a formal descrip-
tion of a security model is, in fact, required at the B2 level
by the Orange Book. The main new requirement for A
level is a Formal Top-Level Specification (FTLS). At the B
level, only a Descriptive Top-Level Specification (DTLS) is
required.

An FTLS has to be formal, and there is a definition in
the back of the Orange Book of what "formal" means when
applied to "Top-Level Specification.” I don't think anyone
has a perfect definition of that word. In any case, you have
to demonstrate a correspondence between the security
model and the Formal Top-Level Specification. As I read
it, that correspondence does not have to be demonstrated
formally; that is, you don't have to have formal mapping
from the security model to the top-level specification, but

e
N
~

=

-~

. !
P2 2 S AN TN /’]

4 c
Sy #“V' P2 :Jn’:’/Z«AV(B =f s

27

the correspondence has to be demonstrated somehow. [
suspect that if you can do it formally, it will be more
convincing. But a lot of this has to do with whom you're
convincing, and what they have in mind. The dashed lines
on the side of Slide 3 represent the requirement to
demonstrate the correspondence between the formal
top-level specification and the detailed specifications. There
is not a requirement for a formal detailed specification, and
so that correspondence is probably going to be informatl,
unless you've done even more than is required. Similarly,
there needs to be a demonstrated correspondence between
the detailed specification and the implementation.

Dan talked about covert channels and described them.
There is a requirement at the A level for a formal analysis
of storage channels. That requirement is (the way I read
the Criteria, anyway) the one place where the formal
top-level specification really gets used. You can‘t do a
formal analysis of storage channels without a formal
top-level specification. So that requirement is a short
sentence in the Criteria that, in many respects, actually
levies the requirement for an FTLS.

Finally, in the operations and maintenance phase, there
is & requirement for a trusted distribution facility. There is
quite a lot there that I've gone through very quickly. You
may still ask, *If B3 specifies all the necessary functions,
and we have all the functions we need in B3, why bother
with level A? Wonderful, you've got such-and-such
documentation, but who needs it?" The reason, (Slide 4)
it's needed is that we want assurance that the functions
operate as intended. And the reason we want that
assurance is that we want to place greater reliance on the
automated controls of the system. Then we can reduce the
procedural and personnel controls and operate these
systems more flexibly and effectively. Without that
additional assurance, we can't relax procedural or personnel
controls.

Now, (Slide 5) I'1l back off just a little bit, philosophi-
cally, and say, "Let's look at these criteria. Why would
you want to take this particular way of gaining assurance?*
The Orange Book says that we get higher assurance by
having formal specifications and things like that. So I
thought a little about what people do to get assurance in
other systems.

The first thing people do is test. And there are
requirements for testing in the Criteria as well. I don't
mean to overlook those. | would categorize "test” as
positive, that is, trying to demonstrate that the specified
functions of the systems are there. It's the kind of thing
people do all the time. There is also negative testing, where
you try to see¢ whether the system will break, or if you can
break it. That seems to be one way of getting assurance:
testing.

o,
”

Another way is redundance. It seems to me that there
are different kinds of redundance. One kind, that we've
seen in the space shuttle, for example, is to say, "Here's
one specification. Let's have two independent implementa-
tions of it. You do it, and you do it. And then we're
going to run them and compare the answers.” If the
answers come out the same, even though different people
implemented the specification, I may have a little higher
confidence that the answer is what I wanted. At least both
implementors made the same mistake. That's one way of
getting some increased confidence, and I think that it is
based on a kind of redundance.

Another way, the one advocated in the Orange Book is
to construct different descriptions of the system and show
that those descriptions are equivalent. These are, in a
sense, redundant descriptions of the system. You start with
a security model, which is a very high-level, abstract
description of the system behavior. You must have a
formal security model, even for B2, as I've already said.
The A level requires an FTLS as well, and you must show
that it corresponds to the security model. The correspond-
ence may be informal, but it must be demonstrated. I think
that's a kind of redundance. That's wherp the assurance
comes from, in my view. !

The guideline for testing is also strengthened for A-level
systems. It says more people have to fail to penetrate an A
level system than a B level system, and they have to be
smarter people. You'll have tq look up the details.

The next two slides (Slides 6 and 7) review the criteria
that are in the Orange Book. There are additional criteria
at the A level in two categories - Assurance and Documenta-
tion. Two kinds of assurance are described: operational
assurance and life cycle assurance. Under operational
assurance, the requirement for formal methods for covert
channel analysis is levied. That is the only requirement
added in operational assurance, I believe. In life cycle
assurance, first comes security testing - this requires a
demonstration that the implementation is consistent with
the formal top-level specification. I raised the issue at one
point that tests (unless they are exhaustive - a practical
impossibility for large systems) can't really demonstrate that
two things are consistent; they can only demonstrate that
they're inconsistent. Apparently, this wasn't considered a
serious discrepancy. Second under life cycle assurance
comes the requirement for design specification/verification.
Here, the requirement for a formal top-level specification is
imposed. The formal top-level specification and the
descriptive top-level specification have to include everything
visible at the TCB interface. The idea here is that the
trusted computing base provides certain functions. All of
those functions visible to users at the TCB interface have to
be called out in the formal top-level specification, and that
includes functions that are not even software implemented -
they could be implemented by firmware or hardware. The
SCOMP FTLS, for example, includes some hardware
functions.

Slide 6 also covers the third and fourth A level
requirements under life cycle assurance. These requirements
are more mundane; they don't push the state-of-the-art,
except that they're rarely applied as extensively as the
Criteria implies. The first requirement is for configurations
management. There must be a configuration management

28

system to control changes to the formal security policy
model (should you wish to make any such changes), the
descriptive top-level specification, the formal top-level
specification, and so on, throughout the entire life cycle.
The "and so on" includes design documentation. Let's back
up for a second. We have a view of a wonderful system in
which we have a formal top-level specification, and we have
an implementation, and we have demonstrated some
correspondence between them, and then we have code. We
want to rely on the controls in that code. So we must be
sure that the code that runs operationally is the code that
we built - that it hasn't gotten subverted somewhere along
this path. That is the motive for having tools to compare a
new version of the trusted computing base with a previous
version and show the changes. If, in turn, we are to rely
on what these tools tell us, it becomes important that the
tools work properly. So those tools have to be under
configuration control too, because subverting them can be
equivalent to subverting the mechanism for releasing new
versions - it could allow a Trojan horse to be inserted
unnoticed. Similarly, the material for generating the trusted
computing base must be protected. The requirement for a
trusted distribution facility follows from this line of
reasoning. The specific requirements here are to assure the
integrity of that mapping between the specification master
copy and the code master copy.

Slide 7 shows the requirements added by Level A for
documentation. First, test documentation is required. This
must include the results of mapping the trusted computing
base source to the formal top-level specification. The
Criteria does not specify the form of this documentation;
that will probably be determined on an adhoc basis. As
part of the design documentation, the correspondence
between the formal top-level specification and the
implementation must be described. This description can be
informal. The way that the elements of the trusted
computing base correspond to the FTLS must also be
documented; this too can be informal. I find this a little
confusing. I'm not sure what the elements of the formal
top-level specification are versus the elements of the trusted
computing base. Maybe Sheila can enlighten me on that.

SHEILA: Yes.

LANDWEHR: The final requirement is for a
description of the hardware, firmware, and software
mechanisms strictly internal to the TCB. Elsewhere, a
description of the functions (hardware, software, and
firmware) available at the TCB interface is required. Here,
that requirement is extended to require a description of any
mechanisms internal to the TCB that are not reflected in
the FTLS. I suspect the motive is to uncover sneak paths
within the TCB that are not covered in the TCB interface
specification. But, again, I'm uncertain exactly what the
considerations were for including this requirement.

To recap, suppose I want to build an A level system.
How will its life cycle differ from that of a system intended
for Level C or B? (Slide 8) In my view, the formal top-level
specification should be developed prior to, or at least in
parallel with, the descriptive top-level specification. The
descriptive specification corresponds to a conventional
software design document. The formal specification should
control the informal detailed specification; at the least it
ought to track the changes in the detailed specification.

Otherwise, it will be difficult to show that a mapping exists
between the two. For system developers this is a very
important point. To get the benefits of this approach, the
implementors have to understand the language in which the
FTLS is written, and they have to be competent to update
that specification. Otherwise, one group will write the
FTLS and then another will implement it. If the imple-
mentors can't read the FTLS, they may just use the
informal specifications. Differences will arise among the
different specifications, some will get out of date, and
demonstrating the necessary correspondences will be
impossible.

Increased configuration control will also change the life
cycle, as will closer controls on distribution and mainte-
nance.

For those of you who haven't seen a formal top-level
specification it's typically a collection of functions defined
in a particular non-procedural notation (Slide 9). Non-
procedurality is not a requirement, but that's the most
common form. In any case, it's a collection of functions
analogous to those you might see described in English, only
presented in a more structured, less ambiguous (more
formal) way. It will be a more mathematical-looking
document than usual specifications. Slide 18 lists some
available languages. You can read about them in an article
written by Maureen Cheheyl, Morrie Gasser, George Huff,
and Jon Millen, entitled *Verifying Computer Security," in
ACM Computing Surveys, September 1981. That's a good
place to begin learning about formal specifications for
computer security.

Another thing I would want if I were going to build an
A level system would be some examples (Slide 14). It's
always easier to do something new if you have an example
to follow. Unfortunately, no A level systems have been
certified yet, but there are some evaluations in progress,
and there is documentation available for some of those.
Unfortunately, I can't tell you where to get these
documents. However, I did my best in an article that
appeared in /EEE Computer in July 1983, and I have
provided some references there. You might also ask the
people at the Computer Security Center, since I think that
they ought to develop a library of such documents or at
least provide references to them. I will point out one other
recent article, by Jon Silverman, on the verification of the
SCOMP kernel. It is in the Proceedings of the Ninth
Symposium on Operating Systems Principles - ACM
SIGOPS.

Earlier drafts of the Criteria included an A2 level,
which has been deleted. I think the reason for the deletion
is that people at the Center think that meeting those
requirements is not within the state-of-the-art yet. What we
might see in the future (Slide 11) are requirements for using
verified tools to produce sccure systems. We might have
verification requirements on compilers, for example. We
might also see some proofs, not just of formal top-level
specifications, but of lower-level specifications, and proofs
of correspondence between levels. Perhaps test data will be
generated automatically from specifications. Dan alluded to
the idea that in a more structured system one might be able
to do a more intelligent job of testing. We may also see
proofs of different sorts of security properties. The
primary emphasis of security properties now, as was

29

pointed out this morning, is on disclosure. There may be
other properties people could formulate, and they might
like to prove that they are preserved by some system.

I will close with one problem that I can't resist
pointing out (Slide 12). There have been some small
systems built, perhaps a thousand lines of GYPSY in length
- small but, nevertheless, functional systems that have been
implemented and have had their code verified, as well as
their formal top-level specifications. So they've actually
met the fundamental requirements for assurance that are
levied by level A. In fact, they've not only met them,
they've exceeded them. However, these are small, special-
purpose systems. They don't provide the functions that are
required of even a B! system and they don't need to
provide them. So, under the current Criteria, if I had to
evaluate them, I'd probably have to rate them somewhere
in level C. This, to me, is a problem. The structure of the
Criteria now gradually increases what's required on all
components as you advance from one level to the next.
There is an increase in the formality with which the security
policy is stated, in what labelling is required, in how much
testing is required, and so on. There is a gradual increase
in requirements in each category from C! to C2, C2 1o BI,
Bl to B2, and so on until we make the jump from B3 to A.
Level A primarily increases requirements in a single
category: assurance. So, I see an unaesthetic difference
between the way A is defined relative to the other levels and
the gradual entry of the others. I'm not sure exactly how
to improve this.

SHEILA: What would you see as a better rating scale?
LANDWEHR: Do you want me to propose one?
SHEILA: Yes. Since you brought it up.

LANDWEHR: I don't have a ready answer. One
possibility is to have ratings apply independently to each of
several axes. I think separating concerns and being able to
say that a system has one level of assurance and another
level of function, for example, might be useful. I think
that's quite a possible scheme, though it's not the initial
one. There may yet be a different color document after the
orange one. (I'm speculating.)

