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A SECURITY MODEL FOR MILITARY MESSAGE SYSTEMS

INTRODUCTION

A system is secure if it protects information that it processes adequately against unauthorized dis-
closure, unauthorized modification, and unauthorized withholding (also called denial of service). We
say "adequately," because no practical system can achieve these goals without qualification; security is
inherently relative. A secure system is multilevel secure if it protects information of different
classifications from users with different clearances; thus, some users may not be cleared for all of the
information that the system processes.

In recent years, security models have been developed both to describe the protection that a com-
puter actually provides and to define the security rules it is required to enforce [1]. In our view, a
security model should enable users to understand how to operate the system effectively, implementers
to understand what security controls to build, and certifiers to determine whether the system's security
controls are consistent with relevant policies and directives and whether these controls are implemented
correctly [2,3].

Recently the Bell-LaPadula model [4,51 has dominated efforts to build secure systems. The publi-
cation of this model advanced the technology of computer security by providing a mathematical basis
for examining the security provided by a given system. Moreover, the model was a major component
of one of the first disciplined approaches to building secure systems.

Unfortunately, a system that strictly enforces the axioms of the Bell-LaPadula model without the
use of trusted subjects is often impractical: in real systems, users may need to perform operations that,
although they do not violate our intuitive concept of security, do violate one of the assertions (the *-
property) of the model. For example, a user may need to extract an unclassified paragraph from a
confidential document and use it in an unclassified document. A system that strictly enforces the Bell-
LaPadula model would prohibit this operation unless it were performed by a trusted subject. Conse-
quently, systems based on this model usually contain mechanisms that permit some operations that the
axioms prohibit, e.g., the trusted processes in KSOS [61 and SIGMA [7]. The presence of such mecha-
nisms makes it difficult to determine the actual security policy enforced by the system and complicates
the user interface.

To avoid these problems, we take a different approach. We believe that a security model should
be derived from a specific application. To evaluate our approach, we have formulated a security model
for a family of military message systems. Defining an application-based security model is part of a
larger effort whose goals are to develop a disciplined approach to the production of secure systems and
to produce fully worked out examples of a requirements document and a software design for such sys-
tems. In this report, we introduce the message-system application, discuss the Bell-LaPadula trusted
process approach to building secure systems, present a security model for military message systems
both informally and formally, compare our model with the Bell-LaPadula model, and summarize our
approach to building secure message systems.

Manuscript approved October 17, 1983.
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REQUIREMENTS OF MILITARY MESSAGE SYSTEMS

In recent years, automation has been applied increasingly to the handling of military messages [8].
While the primary purpose of military message systems is to process formal messages, i.e., official mes-
sages exchanged by military organizations, such systems may also handle informal messages, i.e.,
unofficial messages exchanged by individuals. Formal messages are transmitted over military networks,
such as AUTODIN; their format and use is governed by military standards. Examples of informal mes-
sages are those currently supported by several message systems (e.g., HERMES [91) available on the
ARPA network.

Functional Requirements

Message-system operations may be organized into three categories: operations on incoming mes-
sages, operations on outgoing messages, and message storage and retrieval. Operations in the first
category permit a user to display and print messages he has received. Second-category operations sup-
port the creation, editing, and transmission of outgoing messages. Message storage and retrieval opera-
tions allow users to organize messages into message files and to retrieve messages via single keys (e.g.,
message id) or combinations of keys (e.g., subject and originator). Typically, military systems that pro-
cess formal messages provide the same operations as systems that process informal messages plus
several additional operations, such as distribution determination, action and information assignment,
and release [8].

Security Requirements

Each formal military message is composed of several fields, including To, From, Info, Date-Time-
Group, Subject, Text, Security, and Precedence. A classification, such as Unclassified or Secret, is
assigned to each field and to some subfields, e.g., the paragraphs of the Text field; further, the overall
message has a classification that is at least as high as that of any field or subfield. Thus, the Subject field
of a message may be classified at a lower level than the message as a whole, and two paragraphs of the
Text field may have different classifications.

In some data-processing applications, users process information at a single security level for long
periods of time. In contrast, message-system users often need to handle data of several classifications
during a single computer session. For example, a user may wish to compose an unclassified message
based in part on a previous classified message he has received. To accomplish this, he must simulta-
neously display the classified information and compose the unclassified message. As a further example,
the user may wish to scan newly arrived messages and print only those that are unclassified. To do so,
he must display data of several different classifications and then print a hard copy of only the
unclassified data.

Military message systems are required to enforce certain security rules. For example, they must
ensure that users cannot view messages for which they are not cleared. Unfortunately, most automated
systems cannot be trusted to enforce such rules. The result is that many military message systems
operate in "system-high" mode: each user is cleared to the level of the most highly classified informa-
tion on the system. A consequence of system-high operation is that all data leaving the computer sys-
tem must be classified at the system-high level until a human reviewer assigns the proper classification.

A goal of our research is to design message systems that are multilevel secure. Unlike systems
that operate in system-high mode, multilevel secure systems do not require all users to be cleared to
the level of the highest information processed. Moreover, information leaving such a system can be
assigned its actual security level rather than the level of the most highly classified information in the
system. Unlike a system that operates at system-high, a multilevel system can preserve the different
classifications of information that it processes.
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EXPERIENCE WITH THE BELL-LAPADULA MODEL AND TRUSTED PROCESSES

Although its complete formal statement is lengthy and complex, the Bell-LaPadula model may be
briefly summarized by the following two axioms:

* the simple security rule, which states that a subject cannot read information for which it is not
cleared ("no read up"), and

* the *-property, which states that a subject cannot move information from an object with a
higher security classification to an object with a lower classification ("no write down").

These axioms are to be enforced by restricting the access rights that subjects (e.g., users and processes)
have to objects (e.g., files and devices).

A less frequently described part of the Bell-LaPadula model is its concept of trusted subjects, i.e.,
subjects that are allowed "to operate without the extra encumbrance of the *-property," because they are
trusted "never [to] mix information of different security levels" [101. More precisely, a trusted subject
can have simultaneous read access to objects of classification x and write access to objects of
classification y, even if the classification of y is lower than the classification of x. The formal statement
of the Bell-LaPadula model places no constraints on the trusted subject's violations of the *-property.

A number of projects have used the Bell-LaPadula model to describe their security requirements.
In these projects, strict enforcement of the axioms of Bell-LaPadula without trusted subjects has proved
to be overly restrictive, since users frequently need to perform operations that do not violate security
but do violate the *-property. To deal with this problem, trusted processes were introduced as an imple-
mentation of the concept of trusted subjects. In the following sections, we summarize experience with
the Bell-LaPadula model and trusted processes in four projects: the Military Message Experiment
(MME), the Air Force Data Services Center (AFDSC) Multics, the Kernelized Secure Operating Sys-
tem (KSOS), and the Guard message filter.

The Military Message Experiment (MME)

The MME's goal was to evaluate the utility of an interactive message system in an operational
military environment [11]. During the MME, more than 100 military officers and staff personnel used
SIGMA, the message system developed for the experiment, to process their messages [12,13].
Although SIGMA was built on the nonsecure TENEX operating system, its user interface was designed
as though it were running on a security kernel, i.e., a minimal, tamperproof mechanism that assures that
all accesses that subjects have to objects conform to a specified security model. SIGMA's user interface
was designed so that it would not change if SIGMA were rebuilt to operate with a security kernel.

During the planning phase of the MME, it was decided that SIGMA would enforce the Bell-
LaPadula model [7]. This decision led to a number of difficulties, three of which are described here.
The first problem arose from the initial decision, later changed, to adopt the model without trusted sub-
jects; the other two problems apply to Bell-LaPadula with or without trusted subjects.

Prohibition of Write-Downs

The *-property of Bell-LaPadula disallows write-downs; yet, in certain cases, message-system users
need to lower the classification of information. For example, a user may create a message at top secret
and, after he has entered the message text, decide that the message classification should be secret. A
system that strictly enforces the *-property would prohibit a user from reducing the message
classification. 'he user would be required to create a new message at secret and reenter the text.
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Absence of Multilevel Objects

Bell-LaPadula recognizes only single-level objects; some message system data objects (e.g., mes-
sages and message files) are inherently multilevel. A computer system that treats a multilevel object as
single-level can cause some information to be treated as more highly classified than it really is. For
example, when a user of such a system extracts an unclassified paragraph from a secret message, the
system labels the paragraph secret even though the paragraph is actually unclassified.

No Structure for Applicotion-Dependent Security Rules

Military message systems must enforce some security rules that are absent in other applications.
An example is a rule that allows only users with release authority to invoke the release operation.
(This release of a message is security-relevant because it allows a wider set of users to view the mes-
sage and because it certifies that a particular military organization originated the message.) Such
application-dependent rules are not covered by Bell-LaPadula and, hence, must be defined outside of it.

To address the first problem (and, to some extent, the third), the SIGMA developers designed a
trusted process that is not constrained by the *-property and is, therefore, permitted to perform write-
downs. For example, a SIGMA user could search a file containing both unclassified and secret mes-
sages and then display an unclassified message whose citation was returned by the search; such an
operation required the intervention of the trusted process, since the message citation was transmitted
from the secret process that did s.he search to the unclassified process that handled the message display.
Unlike the Bell-LaPadula model, which puts no explicit constraints on write-downs performed by the
trusted subjects, SIGMA's trusted process narrowly limited the cases in which write-downs were permit-
ted. Reference 7 gives further details on the role of the trusted process in SIGMA.

SIGMA's use of a trusted process was helpful in that it relaxed the rigid constraints of Bell-
LaPadula, thus permitting users to perform required operations. However, adding the trusted process
also caused a serious problem: it made the security policy that SIGMA enforced difficult to understand.
Interviews held during the MME revealed that few SIGMA users clearly understood the security policy
that was being enforced. It was an assumption of SIGMA's design that user confirmation of security-
relevant operations would prevent security violations; because users issued confirmations without
comprehending why these confirmations were needed, this assumption was unwarranted.

AFDSC Multics

In the mid-1970s, Multics was modified to include the access isolation mechanism (AIM). This
version of Multics, which has been used at the AFDSC for several years, supports the assignment of
security levels to processes and segments and enforces the Bell-LaPadula model. Multics-AIM also
contains trusted functions, invoked via a special operating system gate, to enforce access control on
objects smaller than a segment, to allow security officers to downgrade files in response to user
requests, and to provide other "privileged" operations.

Although Multics-AIM is generally considered a success, experience with it at the AFDSC illus-
trates some difficulties that arise from strict enforcement of the Bell-LaPadula axioms and from the use
of trusted functions. For example, if a user operating at the top secret level wishes to send an
unclassified message to another user operating at the secret level, Multics-AIM requires that the mes-
sage be treated as though it were top secret. The recipient is not notified of its arrival until he logs in
as a top secret user.

Problems also occur when a user operating at a low security level tries to send mail to a user at a
higher level. Mailbox segments in Multics-AIM are special: they have both a minimum and maximum
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access level. The minimum is defined by the level of the directory that contains the mailbox segment.
Thus, a user operating at unclassified is prohibited from sending a message to a mailbox located in a
secret directory. In this case, the mail could not be sent unless the sender were to log out and log back
in at the secret level. Because this situation arises frequently, system administrators are allowed to
invoke a trusted function that permits them to send mail without logging out and logging back in again.

Kernelized Secure Operating System (KSOS)

KSOS [6] was to be a security-kernel based system with a UNIX-compatible program interface on
a DEC PDP-11. The KSOS security kernel was designed to enforce strictly the axioms of the Bell-
LaPadula model on user-provided programs. To handle those situations where strict enforcement is
incompatible with functional requirements, the kernel recognizes certain privileges that allow some
processes to circumvent parts of this enforcement. These privileges include the ability to violate the *-
property, to change the security or integrity level of objects, and to invoke certain security kernel func-
tions.

KSOS developers defined a special category of software, called non-kernel security related (NKSR),
that supports such privileges. For example, the "Secure Server" of the KSOS NKSR allows a user to
change the security level of files he owns and to print a file classified at a lower security level without
raising the security level of the printed output to the level of his process. Both of these operations
would be prohibited by strict enforcement of the Bell-LaPadula axioms.

Guard

The Guard message filter [14] is a computer system that supports the monitoring and sanitization
of queries and responses between two database systems operating at different security levels. When a
user of the less-sensitive system requests data from the more-sensitive system, a human operator of the
Guard must review the response to ensure that it contains only data that the user is authorized to see.
The operator performs this review via a visual display terminal.

One version of the Guard is being built on a security kernel that enforces the axioms of the Bell-
LaPadula model. However, strict enforcement of the *-property is not possible, since a major require-
ment of the Guard system is to allow the operator to violate it, i.e., to allow information from the more
sensitive system to be sanitized and "downgraded" (or simply downgraded), so that it can be passed to
systems that store less-sensitive information. An important component of this version's design is the
trusted process that performs this downgrading.

Lessons Learned

Experience has shown that, on the one hand, the axioms of the Bell-LaPadula model are overly
restrictive: they disallow operations that users require in practical applications. On the other hand,
trusted subjects, the mechanism provided to overcome some of these restrictions, are not restricted
enough. The formal model provides no constraints on how trusted subjects violate the *-property.
Consequently, developers have had to develop ad hoc specifications for the desired behavior of trusted
processes in each individual system. While such an approach relaxes the rigid enforcement of the -
property, it introduces two additional problems:

* Use of the axioms in conjunction with trusted processes makes it difficult to determine the
exact nature of the security rules that a system enforces. In the MME and the other three
projects described, the security rules enforced by the system as a whole are not the same as
the axioms of the model. The actual security rules enforced by each system include both
the axioms of the Bell-LaPadula model and the exceptions allowed by the trusted processes.
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* Because the actual policies in practical systems deviate from the Bell-LaPadula axioms, any
inductive proof that such a system maintains a secure state, based on strict enforcement of
the axioms of the model, is a proof about only part of the system and cannot apply to the
entire system.

Moreover, trusted subjects do not address the two other problem areas of the Bell-LaPadula
model discussed above, i.e., its failure to support multilevel objects and its lack of a structure for
including application-dependent security rules.

MILITARY MESSAGE SYSTEM (MMS) SECURITY MODEL

Our goal is to define a single, integrated security model that captures the security policy that a
military message system must enforce, without mentioning the techniques or mechanisms used to
implement the system or to enforce the policy. The security model defined here is intended to allow
users to understand security in the context of message systems, to guide the design of military message
systems, and to allow certifiers to evaluate such systems. The model presented here is informal; it is
the basis for the formal model presented in the following section.

In this section we define some terms, use them to describe how a user views the system's opera-
tion, and state assumptions and assertions, based on the terms and the user's view of operation, that
are intended to be sufficient to assure the security of the system. The security model comprises the
definitions, the user's view of operation, the assumptions, and the assertions. It is a revision of earlier
work [3].

This model does not address auditing, although secure message systems clearly require auditing
mechanisms. The existence of an audit trail may deter potential penetrators, but auditing is primarily a
technique for providing accountability and for detecting security violations after the fact. The security
model focuses on assertions that, if correctly enforced, will prevent security violations. Consequently,
assertions and assumptions about auditing do not appear; in a more detailed system specification, audit-
ing requirements would be explicit.

The model itself places no constraints on the techniques used to implement a military message
system or to verify that a particular system correctly enforces the assertions of the model. An imple-
mentation based on a complete formal specification and proof of correctness would be as admissible as
one based on a security kernel and trusted processes, or even one employing standard software
engineering techniques for design, testing, and validation. By separating the statement of the security
model from the concerns of implementation and verification, we can allow for advances in these areas
without depending on them.

Definitions

The definitions given here correspond in most cases to those in general use and are given here
simply to establish an explicit basis for the model. We distinguish between "objects," which are single-
level, and "containers," which are multilevel. We also introduce the concept of "user roles," which
define job-related sets of privileges.

Classification:* A designation attached to information that reflects the damage that could be caused by
unauthorized disclosure of that information. A classification includes a sensitivity level
(unclassified, confidential, secret, or top secret) and a set of zero or more compart-
ments (crypto, nuclear, etc.). The set of classifications, together with the relation

*This definition corresponds to that used by other authors for security level In this report, security level and classification are
synonyms.
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defining the allowed information flows between levels, forms a lattice [15]. Most
dissemination controls, such as NATO, NOFORN, and NOCONTRACTOR, can be
handled as additional compartment names.

Clearance: The degree of trust associated with a person. This is established on the basis of back-
ground investigations and the tasks performed by the person. It is expressed in the
same way as classifications are, as a sensitivity level and a (possibly null) compartment
set. In a secure MMS, each user will have a clearance, and operations performed by
the MMS for that user will check the user's clearance and the classifications of objects
to be operated on to determine whether the required level of access is authorized.
Some other characteristics of a user, such as his nationality and employer, may also be
treated as part of his clearance so that dissemination controls are handled properly.

UserID: A character string used to denote a user of the system. To use the MMS, a person
must present a userID to the system, and the system must authenticate that the user is
the person corresponding to that userID. This procedure is called logging in. Since
clearances are recorded on the basis of one per userID, each user should have a unique
userID.

User: A person who is authorized to use the MMS.

Role: The job the user is performing, such as downgrader, releaser, or distributor. A user is
always associated with at least one role at any instant, and the user can change roles
during a session. To act in a given role, the user must be authorized for it. Some
roles may be assumed by only one user at a time (e.g., distributor). With each role
comes the ability to perform certain operations.

Object: A single-level unit of information. An object is the smallest unit of information in the
system that has a classification. An object thus contains no other objects - it is not
multilevel. There are many kinds of objects; an example is the date-time group of a
message.

Container: A multilevel information structure. A container has a classification and may contain
objects (each with its own classification) and/or other containers. In most MMS family
members, message files and messages are containers. Some fields of a message (such
as the Text field) may be containers as well. The distinction between an object and a
container is based on type, not current contents: within a family member, if an entity
of type message file is a container, then all message files in that family member are
containers, even if some of them are empty or contain only objects and/or containers
classified at the same level as the message file itself. Devices such as disks, printers,
tape drives, network interfaces, and users' terminals will be containers, rather than
objects, in most MMS family members.

Entity: Either a container or an object.

Container clearance required (CCR): An attribute of some containers. For some containers, it is
important to require a minimum clearance, so that if a user does not have at least this
clearance, that user cannot view any of the entities within the container. Such con-
tainers are marked with the attribute container clearance required (CCR). For example,
a user with only a confidential clearance could be prohibited from viewing just the
confidential paragraphs of a message classified top secret if the message (which is a
container) is marked CCR. On the other hand, given a message file containing both

7



LANDWEHR, HEITMEYER, AND MCLEAN

top secret and confidential messages, it may be acceptable to allow the user in question
to view the confidential ones, even though the container (message file) as a whole is
classified top secret. In this case, the file would not be marked CCR.

ID: Identifier. An ID names an entity without referring to other entities. For example,
the name of a message file is an ID for that file. Some, but not necessarily all, entities
can be named by identifiers. Entities may also be named in other ways, e.g., "the
current message's Text field's third paragraph." (This is an indirect reference, defined
below.)

Direct reference: A reference to an entity is direct if it is the entity's ID.

Indirect reference: A reference to an entity is indirect if it is a sequence of two or more entity names
(of which only the first may be an ID).

Operation: A function that can be applied to an entity. It may simply allow that entity to be
viewed (e.g., display a message), or it may modify the entity (update a message), or
both (create a message). Some operations may involve more than one entity (copy a
message from one message file to another).

Access Set: A set of triples (userID or role, operation, operand index) that is associated with an
entity. The operations that may be specified for a particular entity depend on the type
of that entity. If a given operation requires more than one operand, the operand index
specifies the position in which a reference to this entity may appear as an operand. For
messages, operations include DISPLAY, UPDATE, DELETE, and others. The
existence of a particular triple in the access set implies that the user corresponding to
the specified userlD or role is authorized to invoke the specified operation on the
entity with which the set is associated.

Message: A particular type implemented by an MMS. In most MMS family members, a message
will be a container, though messages may be objects in some receive-only systems. A
message will include To, From, Date-Time-Group, Subject, Releaser, and Text fields, and
additional fields as well. A draft message also includes a Drafter field.

User's View of MMS Operation

We present the following as a model of the use of a secure MMS. Terms defined in the previous
section are printed in capitals.

Persons can gain access to the system only by logging in. To log in, a person presents a USERID;
the system then performs authentication using passwords, fingerprint recognition, or any appropriate
technique. Following a successful authentication, the USER invokes OPERATIONS to perform the
functions of the message system. The OPERATIONS a USER may invoke depend on his USERID and
the ROLES for which he is authorized; by applying OPERATIONS, the USER may view or modify
OBJECTS or CONTAINERS. The system enforces the security assertions listed in the following sec-
tions (that is, it prevents the user from performing OPERATIONS that would contradict these asser-
tions).

Security Assumptions

It will always be possible for a valid user to compromise information to which he has legitimate
access To make the dependence of system security on user behavior explicit, we list the following

8
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assumptions; these assumptions are really security assertions that can only be enforced by the users of
the system:

Assumption 1. The System Security Officer (SSO) assigns clearances, device classifications, and
role sets properly.

Assumption 2. The user enters the correct classification when composing, editing, or reclassifying
information.

Assumption 3.

Assumption 4.

Within a classification, the user addresses messages and defines access sets for
entities he creates so that only users with a valid need-to-know can view the infor-
mation.

The user properly controls information extracted from containers marked CCR
(i.e., exercises discretion in moving that information to entities that may not be
marked CCR).

The basis for these assumptions is that, when there is no other source of information about the
classification of an entity or the clearance of a person, the user is assumed to provide information that
is correct.

Security Assertions

The following statements hold for a multilevel secure MMS:

Assertion 1. Authorization

Assertion 2. Classification hierarchy

Assertion 3. Changes to objects

Assertion 4. Viewing

Assertion 5. Access to
CCR
entities

Assertion 6. Translating
indirect
references

A user can only invoke an operation on an entity if the
user's userID or current role appears in the entity's access
set along with that operation and with an index value
corresponding to the operand position in which the entity is
referred to in the requested operation.

The classification of any container is always at least as high
as the maximum classification of the entities it contains.

Information removed from an object inherits the
classification of that object. Information inserted into an
object must not have a classification higher than the
classification of that object.

A user can only view (on some output medium) an entity
with a classification lower than or equal to the user's clear-
ance and the classification of the output medium. (This
assertion applies to entities referred to either directly or
indirectly.)

A user can have access to an indirectly referenced entity
within a container marked Container Clearance Required
only if the user's clearance is greater than or equal to the
classification of that container.

A user can obtain the ID for an entity that he has referred
to indirectly only if he is authorized to view that entity via
that reference.

9
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Assertion 7. Labeling
requirement

Assertion 8. Setting clearances,
role sets,
device levels

Any entity viewed by a user must be labeled with its
classification.

Only a user with the role of System Security Officer can set
the clearance and role set recorded for a userlD or the
classification assigned to a device. A user's current role set
can be altered only by that user or by a user with the role
of System Security Officer.

Assertion 9. Downgrading No classification marking can be downgraded except by a
user with the role of downgrader who has invoked a down-
grade operation.

Assertion 10. Releasing No draft message can be released except by a user with the
role of releaser. The userlD of the releaser must be
recorded in the "releaser" field of the draft message.

Discussion

Table 1 compares aspects of the MMS and Bell-LaPadula security models. The rest of this sub-
section clarifies the effects of the model in particular cases. The paragraphs here are not part of the
model; the previous subsections define the model completely. Here we seek only to show how the
model applies in specific circumstances.

* What prevents a user from copying a classified entity to an unclassified entity?

The classification of the entity being copied accompanies the data. Moving explicitly classified
data to an unclassified container is a violation of Assertions 2 and 9 (unless the user requesting
the operation is the downgrader and is performing a downgrade operation), since the classification
of the data in question is effectively changed by the operation. Manipulations that affect only
objects are covered by Assertion 3.

* What about copying a part of an object into another object?

A part of an object inherits the classification of the whole object (Assertion 3). Thus, moving
part of an object into another object is disallowed by Assertions 2 and 3 unless the classification of
the former object is lower than or equal to that of the latter. Note that this constraint does not
affect the user's ability to remove an unclassified paragraph (an object) from a confidential docu-
ment (a container) and use it in an unclassified document (another container).

* Does a user have a "log-in level" ?

Log-in levels are not explicitly part of the model, but the effect of a log-in level can be obtained
through the classification of the user's terminal. The classification of the terminal is an upper
bound on the classification of information that can be displayed on it (Assertion 4). If the user
wishes to restrict further the level of the information that appears on the terminal, he may invoke
an operation to reduce the classification of the terminal. The right to determine the classification
of shared devices (disks, printers, etc.) will generally belong to the SSO. Note that restricting the
level of the information that can appear on the user's terminal does not necessarily restrict the
level of information that programs he invokes may have access to.

* Processes do not appear in the model but surely will be present in the implementation. How will
their activities be constrained?

10
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Table 1 - Comparison of Aspects of Bell-LaPadula and MMS Security Models

Parameter Bell-LaPadula Model MMS Model

Model components Subjects, objects, Users, entities,
accesses, access access sets, roles, etc.
matrix, etc.

Mechanism for Rules System transform
changing state
Constraints on Axioms Security assertions
state changes (simple security, (authorization, classification

*-property, etc.) hierarchy, viewing, etc.)

Exceptions to Trusted subjects None - all users subject
constraints exempted from to same constraints

*-property
enforcement

Structure for None - application Application-dependent
including application- considerations usually security assertions included
dependent assertions embodied in implemen- as part of basic security

tation of trusted sub- model
jects; separate sets
of assertions may be
specified to constrain
behavior of implementation

Structure for None - included in Containers - integral part
multilevel objects practical systems of security model

through implementation
of trusted subjects

Structure for permit- *-property and other Restricted to users with
ting write-downs, axioms prohibit these role of system security
reclassification operations, but officer via downgrade

exceptions are permit-
ted for trusted subjects

Access control based Only one reference path Direct and indirect references
on reference path exists for each object are distinguished, CCR

mechanism allows
separate control

Assumptions on Assumptions implicit Assumptions explicit
security-relevant
user behavior
Informal description None Included as informal model
of system behavior and
security constraints
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Operations, rather than processes or programs, are in the model because they correspond more
closely to the user's view of the system. To the user, the system offers functions that may be
invoked by typing strings of characters, pushing function keys, etc. Each function can be under-
stood by the user as an operation. In the implementation, processes are constrained to invoke
only operations that preserve the truth of the assertions.

* Which entities in a particular message system will be containers and which will be objects?

This decision is part of the next more detailed level of the stated model. Some likely choices are
that messages and message files will be containers and that the date-time group will be an object.
It is not necessary that all message systems in the family make the same choices. If two message
systems that make different choices communicate, some method of mapping between those enti-
ties that are objects in one system and containers in the other must be defined.

* How are entities created?

For each type of entity that users can create, there will be an operation that, when invoked,
creates a new instance of that type. As with all other operations, only users who are authorized
for it can invoke it. Thus, it is not necessarily the case that any particular user will be able to
create any particular kind of object; he must be authorized to do so. In particular, only users
authorized for certain roles may be allowed to create certain kinds of entities.

* How does a user refer to an object or a container?

Some entities have identifiers (IDs) that allow them to be named directly. A given entity may
have zero, one, or more IDs. An entity may also be referred to indirectly by a qualified name
(see the example under the definition of ID). A user (or a program he invokes) can refer to an
entity using any valid ID or qualified name. The former is called a direct reference and the latter
an indirect reference.

* What policy governs access to an entity in a container? Is the classification of the container or of
the contents tested, and with what is it compared?

The answers to these questions depend on the type of access (the operation invoked) and whether
the reference is direct or indirect. If the entity is referred to directly for viewing, Assertion 4
gives the appropriate restriction. If the reference is indirect, there are two cases, depending on
whether or not the object is within a container marked CCR. If it is, both Assertions 4 and 5
have an effect; otherwise, only Assertion 4 is relevant. Note that a user may be permitted to view
a particular entity in a CCR container if he refers to it directly, but be denied access if he refers to
it indirectly. This provides a means for dealing with the aggregation problem without requiring
duplicate copies of protected information: a collection of confidential aggregation-sensitive objects
might be stored in a container marked secret-CCR. A user with a confidential clearance who had
been given the ID of an individual object could refer to it directly, but he would be unable to
view the same item via an indirect reference that identified it as a member of the secret-CCR con-
tainer. Assertion 1 always requires that the user (or his role) be in the access set for the entity-
operation pair specified.

* Is there anything in the system that is not (or is not part of) an entity or a user?

From the user's point of view, no. There may be structures in the implementation that the user
is unaware of and that would be difficult to assign a legitimate classification to (such as internal
operating system queues, perhaps). Anything the user can create, display, or modify, however,
must be (or be part of) an entity or a user.

12
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* What are the relationships among a user, an operation he invokes, and programs that the opera-
tion may invoke on his behalf? For example, what privileges do the programs inherit, and how is
it determined whether a given invocation is allowed under the security policy?

A user has a clearance recorded in the system. When a user invokes an operation on an entity,
his clearance and role, the appropriate device classifications, and the classification, CCR mark, and
access set for that entity determine whether the operation is permitted. The user's ID or currenit
role must be paired with the specified operation in the access set of the entity in question (Asser-
tion 1). If the operation allows information to be viewed via a given device, then the user's clear-
ance and the classification of the output device must equal or exceed the classification of the
information (Assertion 4). Similarly, other security assertions must not be violated by the pro-
grams invoked as part of the requested operation.

* There are no integrity levels or controls defined in the model. What prevents accidental or mali-
cious modification of sensitive data?

The reasons for omitting integrity levels have been discussed previously [16]. Modifications of
clearances, classifications, and role sets are covered in the given set of assertions. Any alteration
of data must presumably be accomplished by a user's invoking an operation; his authorization to
invoke that operation is required by Assertion 1. In the future, specific cases may be treated in
additional assertions similar to Assertion 10.

FORMALIZING THE MMS SECURITY MODEL

To provide a firm foundation for proofs about the security properties of a system specification or
implementation, a formal statement of its security model is needed. This section presents a formal
model that corresponds to the informal MMS security model. It serves three purposes: it is an exam-
ple of how an informal model of a system's security requirements can be made formal; being abstract,
the formal model can be interpreted by others for different but related applications; and it is a basis for
proofs about particular message system specifications and implementations.

The MMS security model comprises 15 definitions, a one-paragraph description of MMS opera-
tion, four assumptions about user behavior, and ten assertions that hold for the MMS. We focus on
formalizing the ten assertions only, although in doing so, some notation is required to define formal
entities that correspond to those discussed informally in the 15 definitions. The assertions are explicated
formally in Definition 2 concerning system states and in Definitions 5 through 11 concerning the sys-
tem transform. Although the correctness of the explication cannot be proven, we discuss the correspon-
dence between the formalism and the informal model briefly following the explication.

Each MMS family member can be modeled as an automaton with inputs, an internal state, and
outputs. The inputs correspond to the commands users give to the system. Because this is a security
model, we are principally concerned with modeling the categories of inputs that affect system security.
The internal state of the automaton corresponds to the information currently stored in the message sys-
tem - messages, message files, classifications, access sets, and so on. Output from the automaton con-
sists of command responses - the things that users view or obtain in response to particular requests.
These may include entities, parts of entities, classification labels, and IDs. We model output as a set of
distinguished entities; although output is treated as part of the internal state, it represents that part that
is directly visible to users. Some commands cause a state change that affects the output set, others may
cause a change of state without changing the output set, and still others (particularly commands that do
not satisfy the security assertions) cause no state change at all. A history of the system is a particular
sequence of inputs and states.

13
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Approach

We assume the existence of a set of possible users and a set of possible entities. Given these sets
we define system state and the notion of a secure state. Next, we define system and history and introduce
constraints on the transform that moves a system from one state to another. A system whose
transform meets all these constraints is said to be transform secure. Finally, the notions of secure history
and secure system are defined.

The structure of the formal model is intended to simplify its application to defining preconditions
and postconditions for system operations. To make explicit. the entities that a given operation may
change, we define the concept of potential modification based, in part, on the work of Popek and Farber
[171. Potential modification is similar to strong dependency, developed by Cohen [18].

System State

In this section we define what it is to be a system state and what it is for a system state to be

secure. We assume the existence of the following disjoint sets:

OP is a set of operations.

L is a set of security levels. > is a partial order on L such that (L, >) is a lattice.

UI is a set of userID's.

RL is a set of user roles.

US is a set of users. For all uEUS, CU(u)EL is the clearance of u, R(u)CRL is the set of
authorized roles for u, and RO (u) 5 RL is the current role set for user u.

RF is a set of references. This set is partitioned into a set, DR, of direct references and a set,
IR, of indirect references. Although the exact nature of these references is unimportant, we
assume that the direct references can be ordered by the integers. In this model we treat
each direct reference as a unary sequence consisting of a single integer, e. g., < 17>. Each
indirect reference is treated as a finite sequence of two or more integers, e. g.,
< n1, * * * ,nm>, where < nI> is a direct reference.

VS is a set of character strings. These strings serve primarily as entity values (e. g., file or mes-
sage contents).

TY is a set of message system data types that includes DM for draft messages and RM for
released messages.

ES is a set of entities. For all e E ES, CE(e) E L is the classification of e. CCR (e) is true iff e is
marked CCR, otherwise false. AS (e) C (UI U RL) x OPx N is a set of triples that compose
the access set of e. (u,op,k) EAS(e) iff u is a userlD or user role authorized to perform
operation op with a reference to e as op's kth parameter. T(e) E TY is the type of entity e.
V(e)E VS is the value of entity e. If T(e)=DM or T(e)=RM, then V(e) includes a
releaser field RE(e), which if nonempty contains a userlD.
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ES contains as a subset the set of entities that are containers. For any entity e in this set,
H(e)= < el, * - * e">, where entity ej is the i th entity contained in e. The set 0 of output
devices is a subset of the set of containers.t Elements o E 0 serve as the domain of two
further functions. D(o) is a set of ordered pairs [(xl,yl), (x2 ,y2 ), * * * , (X,yn)Y, where
each yj is displayed on o. Each xi is either a user or an entity, and the corresponding yj is
either a reference or the result of applying one of the above functions to xi.* We require
that (x, V(x)) E D(o)-xEH(o). 1 CD(o) gives the maximum classification of information
that may be displayed on o. This allows CE(o) to be used as the current upper limit of the
classification of information to be displayed by the output device, so that users can restrict
the classification of output to be lower than the maximum level permitted.

A state maps a subset of userIDs and references (intuitively, those that exist in the state in ques-
tion) to elements of US and ES that represent their corresponding properties. A state also maps a sub-
set of userIDs that "exist" into references that correspond to output devices (intuitively, these users are
logged on to the specified devices). To this end we define three mappings. An idfunction, U, is a one-
to-one mapping from a (possibly improper) subset of UI into US. A reference function, E, is a mapping
from a (possibly improper) subset of RF into ES such that, for all n > 2,
E(<il, * -* ,i">)=e iff E(<il, * * * ,i_,l>)=e*, where e* is a container such that e is the inth ele-
ment of H(e*). For any reference r, if E(r)=e, we say that r is a reference to e (relative to E). A
log-in function, LO, is a one-to-one mapping from a (possibly improper) subset of UI into RF.**

Given a reference function, E, each indirect reference of the form < no, , * * ,n,> to an entity em
corresponds to a path of entities <eo, * * ,e,> such that each ejE rng(E), eo is denoted by the direct
reference <no>, and for all positive integers i< m, e, is the nith entity in container e-1.. Such an
indirect reference is said to be based on each entity ej where 01 < m.

Definition 1: A system state, s, is an ordered triplett (UELO), where U is an id function, E is a
reference function, and LO is a log-in function such that dom (LO) S dom (U) and
rng(LO)Cdom(Efn (RFxO)). We also require that if oE rng(E)fn 0 and (xy)ED(o), then
xE rng (E) U rng (U) to assure that only information about users and entities that "exist" in the
current state can actually be displayed, and that for any reference r, (x,r) ED (o) - E(r)=x.
Finally, we require that E(LO(ul))=E(LO(u 2)) - u1=u2 to prevent two users from being
logged in simultaneously on the same terminal.

Given a system state s=(UELO), we abbreviate E(r) by rS, U(u) by us, and E(LO(u)) by us.

Definition 2: A state s is secure if Vx, y E rng (E), Vo EOf n rng (E), Vw E dom (LO), and Vu E rng (U):

xEH(y) - CE(x)(CE(y),

x E H(s) -CU(ww) > CE (x),

tIn implementations, some kinds of output 'disappear" from the system state (e.g., information sent to a printer or a telecom-
munications port) while others persist (e.g., information displayed on the screen of a terminal, which a user may later refer to
and modify). In the formalization, we do not distinguish between these types; both are intended to be covered by 0.
tBoth the item and what is displayed must be specified so that cases in which, for example, two entities have identical values but
gdifferent security levels can be distinguished.
We extend the set theoretic notions of membership and intersection to apply to tuples in the obvious sense.

**The condition that LO is a function reflects an assumption that a user cannot be on two terminals at the same time. This as-
sumption is merely for ease of exposition.
ttState is defined as a tuple, rather than as a set of functions, because two states whose elements have the same values are in
fact identical, while two entities for which the defined functions return the same values may in fact be different (e.g., two copies
of the same citation).
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(x, V(x)) ED (o)-(xCE(x)) ED (o),

R0(u)5R(u), and

CD (o) > CE (o).

Secure System

In this section we define what a system is and what it is for a system to be secure.

Definition 3: A system I is a 4-tuple (LSso,T) where

I is the set of well-formed system requests, where each request i E I is of the form
<opxl,x 2, ,x">, where each xjERFU UIU VSand opEOP,

S is the set of possible system states;

so designates a special state called the initial state, and

Tis the system transform, i.e., a function from UIxIxS into S.

Definition 4: A history, H, of a system is a function from the set of nonnegative integers N to UIx Ix S
such that (1) the third element of M(0) is so and (2) for all nEN, if II(n)-(uis) and
fl(n+1)=(u',i*,s*), then T(uis)-s*.

Before defining what it means for an operation to potentially modify an entity, we notice that a
reference function E and a fortiori a state S induce a set of functions defined on references that are
counterparts to the set of functions introduced previously that are defined on entities. For example,
there is a function, call it Vs, such that V (r)=V(r 5). Similarly, there is a counterpart relation, call it
Hs, such that H1<rrl, ** ,rr> iff H(r5 )=<r,1 ,...,r,'>. Each counterpart is the user-visible version
of the corresponding entity function. We call these referential counterparts and use them to define what
it means for two states to be equivalent except for a set of references. (We could have developed the
entire formal model in terms of referential counterparts, but preferred the simplicity of functions to
working with the relations Hs and LO,5 )

States s=(UELO) and s"=(U*,E*,LO*) are equivalent except for some set of references S iff (1)
U= U*, (2) LO=LO*, (3) dom (E)=dom (E*), (4) for any entity function F except V, F5-Fs., and
(5) for any reference r E dom (E)-S, V 5(r)- V.(r).

We now define potential modification as follows:

u,i,s potentially modify r iff ' sl,sj: sl is equivalent to s except possibly for some set of references
and T(u,isl)=s4 and V(r5 ,)• V(rS).t

Call y a contributing factor in such a case iff a sl as above and S 2 ,S 2 : s1 and S2 are equivalent
except for {y} and T(uis 2)=s; and V(r .)• V(r O).

S2 $

tThis covers cases of creation (and deletion), since V(r) will be undefined and V(r ;) will be defined (although possibly emp-

ty).

16



NRL REPORT 8806

That is, ui,s potentially modifies r if there is some (second) state that may differ from s in the values
of some entities, and T maps u, i, and this state into a third state in which r's value differs from that
which it had in the second state. The contributing factors are those entities whose values affect r's final
value.

For each referential counterpart and each function defined on users, we posit a unique operation
that changes an entity or user with respect to that function. For example, an operation
set AS(rnew access set) is the only operation that affects r's access set, and it has no other user-visible
effect. Further, if the transition is, e. g., from state s to state s*, ASd.(r) is new access set if
new access set is a character string and V5 (new access set) if new access set is an entity reference.
Changes to the domain of E or U (creation or deletion of entities or users) are also assumed to occur
only by explicit request. The formal release operation defined later is the single exception to this
assumption; it changes the type of r and, potentially, the releaser field of r's value as well.

The exact nature of these operations is unimportant, since these assumptions are included solely
for ease of exposition. Their purpose is not to rule out implementation commands that affect different
parts of entities, but to eliminate the problem of unspecified side effects in the formal model (e.g., per-
mission to view a message marked CCR is not permission to clear the CCR mark). Implementation
commands that can alter more than a single part of a single entity correspond to a sequence of formal
operations. For a given implementation, this correspondence is determined by the semantics of the
implementation command language. Once this correspondence has been determined, so that the
security-relevant effects of each user command are clear, I can be replaced by the set of implementation
commands, with access sets also changed accordingly. Nevertheless, prudence dictates that
modifications that can be made only by the security officer (e. g., changing a user's clearance) be re-
stricted so that there is only a single command that performs them in any implementation.

The following constraints on the system transform lead to the definition of a secure history and a
secure system. Where quantification is not explicit, universal quantification is assumed.

Definition 5: A transform T is access secure iff Vuiss*: T(uis)=s*, [(op E in OP and rkE in RF) -
((u,op,k)EAS(E(rk)) or a IERO(u5) and (Qopk)EAS(E(rk)))I or s=s*!

Definition 6: A transform Tis copy secure iff Vu,iss*: T(uis)=s*,
x is potentially modified with y as a contributing factor - CE(x5 ) > CE(y5 ).

Definition 7: A transform Tis CCR secure iff Vuiss*: T(uis)=s*,
r E i n IR is based on y and CCR (y), and z is potentially modified with r as a contributing factor

- CU(us)>CE(y).

Definition 8: A transform Tis translation secure iff Vuiss*: T(uis)=s", xEDR and (xs.,x)ED(is.)
-a rEifnRF, r5=x5 and (ris based on zand CCR(z) - CU(u5)>CE(z)).

Definition 9: A transform Tis set secure iff Vu,i,s,s*: T(uis)=s*,
(a) 2oEdom(En (RFxO)), CD(o5)•CD(os.) or 3xEdom(U), CU(x5 )•CU(x5.) or

R (x 5)•R (xs.)-security officer ERO(u5); and
(b) xEdom(U) and RO(xs);•RO(xQ.) - u5=xs or security officer ERO(us).

Definition 10: A transform T is downgrade secure iff Vuiss": T(uis)=s9, xEdom(E-(RFx{[D}))
and CE(x5)>CE(x5 .) - downgraderERO(us).

tFor simplicity we disregard error messages in the formalism. In an implementation we assume that if an unauthorized operation
is attempted an appropriate error message will be produced in the next state.
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Definition 11: A transform T is release secure iffVuiss": T(u,is)=s*, (T(x 5)=RM - T(xS.)-RM
and RE(x 5.)-RE(x 5))
and (T(xs)•RM and T(x 5.)=RM - RE(x 5.)=u, Or: r5=x5, i is the operation <releaser>,
releaserERO(u5) and T(xs)=DAP.

Definition 12: A transform is transform secure iff it is access secure, copy secure, CCR secure, transla-

tion secure, set secure, downgrade secure, and release secure.

Definition 13: A history is secure if all its states are state secure and its transform is transform secure.

Definition 14: A system is secure if each of its histories is secure.

Discussion

Perhaps the most basic decision we made in formalizing the MMS model concerned our general

conception of a computer system, in particular the relation between a system state and a system. We
considered a view where a system state consists of entities and their relations, and a system adds to this
users and user operations on entities. Hence, all restrictions on user properties (in particular, the re-
striction that for all u, RO (u) R (u)) are included in the definition of a secure system. We chose
instead to view the distinction between system states and systems in terms of static as opposed to
dynamic properties. Static properties are those that hold for all secure states and, hence, can be
checked by examining a state in isolation; dynamic properties are those that need only hold for the rela-
tion between secure states and, hence, can be checked only by comparing two or more states. In the
view we adopted, all static security properties are included in the definition of a secure state.

To a large extent the choice in conceptualizations is a matter of taste. Bell and LaPadula [41 use

the latter, while Feiertag et al. [5] lean to the former. By minimizing the notion of a secure state, the
former view makes the basic security theorem shorter. The deciding factor in our adopting the latter
view is that it makes it impossible for a system to undergo a security-relevant change without undergo-
ing a change in state.

Principal difficulties we encountered in formalizing the MMS security model were in representing
"copy" and "view," system output, and the notion of an authorized operation. Assertion 3 (Changes to
objects) in the informal model requires formal semantics to reflect the movement of information
between entities, while Assertion 4 (Viewing) requires formal semantics to reflect making an entity
visible to a user. Assertion 5 (Accessing CCR entities) now addresses both copying and viewing. The
semantics for "copy," embodied in the definitions of "potential modification" and "contributing factor,"
are based on a broad interpretation of "copy." Information is considered to be copied, not only if it is
directly moved from one entity to another, but also if it contributes to the potential modification of
some other entity. For example, if an operation scans message file A and copies messages selected by a
filter F to message file B, both A and F contribute to the potential modification of B (and are therefore
subject to the constraints imposed by copy secure and CCR secure), even if both A and F are empty.
The semantics for "view" are straightforward: a thing is viewed if an operation makes it a member of
an output container. In light of these considerations, we have used "access" instead of "view" in Asser-
tion 5.

In the formalization, system output is interpreted as a set of containers; other entities, parts of
entities, references, and classifications that are made visible to a user are interpreted as being copied to
the user's output container. We assume that in any implementation the classifications displayed appear
close to the entities (or parts) they correspond to, but we have not formalized this assumption. Refer-
ences are explicitly included as a part of output, because the same operation applied to the same entities
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can yield different results depending on how the entities are referenced. This leads to the constraint
(translation secure) on operations that produce as output direct references that are translations of
indirect ones. To enforce this constraint, the system must recognize references as a particular kind of
output.

Formalizing the concept of an authorized operation is difficult because the semantics of authorized
operations are unspecified. Our definition of access secure requires that, if an operation changes the
system state (beyond producing an error message as output), then for each entity in the set of
operands, the user or role, operation, and operand index must appear in the access set. Unauthorized
operations must not alter the system state except to report that they are erroneous.

Correspondence to the Informal Model

Assertions 2, 4, and 7 of the informal model, concerning classification hierarchy, viewing, and
labeling, are incorporated in the formal definition of secure state. They correspond respectively to the
first three conditions a secure state must satisfy; the last two conditions require that each user's current
role set must be a subset of his authorized role set and that the current security level of each output
device must be dominated by its maximum allowed level. These last two conditions are implicit in the
informal model.

The remaining assertions of the informal model have been translated into constraints on the sys-
tem transform. Assertion 1 (authorization) corresponds directly to access secure, Assertion 6 to
translation secure, and Assertions 8 through 10 (setting, downgrading, and releasing) correspond respec-
tively to set secure, downgrade secure, and release secure. Set secure restricts the permission to set device
classifications and user role sets to security officers and restricts permission to set a user's current role
to that user or a security officer. Downgrade secure contains an exception for us so that a user is not
prohibited from lowering the current level of his output-device. The formal statement of release secure
makes explicit the requirement that, once released, a message cannot have its type or releaser field
altered.

Assertions 3 and 5 correspond to copy secure and CCR secure. The definition of copy secure actu-
ally covers parts of both Assertion 3 and Assertion 4, because output devices are treated as containers.
So if entity x receives information from an object y, CE (x) > CE (y) (Assertion 3); and if an output
container o receives information from entity x, CE (o) > CE (x) (Assertion 4). CCR secure corresponds
to Assertion 5, under the interpretation that having access to an entity is significant only if that entity is
a contributing factor in the potential modification of another entity.

Storage Channels

Because we have defined potential modification and contributing factor in terms of changes only to
the value of an entity, the constraints imposed by copy. secure and CCR secure do not apply to changes
made to other functions defined on entities (classification, CCR mark, access set, and type) or those
defined on users (clearance, role set, and current role). Thus, information could be transferred from a
higher level to a lower one through these functions. However, changes to user clearances and role sets
are controlled by set secure, changes to classifications are controlled by downgrade secure, changes to
entity type are generally restricted severely by the semantics of the message system; and changing a
CCR mark provides only a single bit of information at a time. Changes to the access set for an entity
could provide a higher rate of information transfer, and if this were a serious concern, the definitions in
question could be modified to include changes of this kind. We chose not to include these because our
principal concern is with changes to the values of entities, and the added notational complexity would
only cloud the presentation. We have left for others the problem of dealing with classifications that are
themselves classified, such as highly sensitive compartment names.
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A Basic Security Theorem for the Formal MMS Security Model

In formalizations where a secure system is a collection of secure states, some feel that a Basic
Security Theorem is needed to show the restrictions on system transforms that insure that a system
starting in a secure state will not reach a state that is not secure [41. Such theorems are of little practi-
cal significance, since their proofs do not depend on the particular definition of security provided by the
model [191. Further, in our approach such a theorem is not pressing, since the concept of a secure sys-
tem is defined largely in terms of a secure transform. Nevertheless, we do appeal to the notion of a
secure state, and some readers may feel that some form of basic security theorem is needed. Those
readers should find it trivial to prove the following analog of the Basic Security Theorem for our
definition of a secure state.

Theorem: Every state of a system T is secure if s0 is secure and Tmeets the following conditions for all
u,i,s,9: T(u,i,s)-s"and for all xyERF, wE US:

1. xsfH(y 5 ) and xs.EH(y5.) - CE(x 5.)( CE(y5 .).

2. x5 EH(y5) and CE(xs.)>CE(ys.) - x,.,fH(y 3 .).

3. x5 f H (s) andxs. E H(H s.) - CU(w5 .) > CE(x5 .).

4. x5 EH(Gs) and CU(w 5 .)4CE(xs.) - xVH(6s.).

5. (x, V(x 5 )) f wv and (x5., V(xs.)) E s. -- (xs.,CE(xs.)) E ws..

6. (x5,V(x5 ))Ei' 5 and (xs.,CE(x5 .)) i'5. (x,.^ (x,.))-f k*

7. R(ws)•R(w 5 .) or RO(w5 )•dRO(w5 .) - RO(w5 .)5R(w5 .).

8. CE(wv)•CE(wv.) or CD(ws);eCD(wv.) - CD (w.)>CE (sf)

Together, conditions 1 through 8 are necessary and sufficient conditions for every state of a sys-
tem to be secure in any system that does not contain states that are unreachable from s0.

OTHER ELEMENTS OF OUR APPROACH

At the Naval Research Laboratory we are producing, in addition to the security model, a require-
ments document, a software design, and two full-scale prototypes of future military message systems
(MMSs). One of the two prototypes will be designed for a military environment where little message
handling is required (e.g., a submarine) and thus will perform few operations. The other prototype will
perform a larger set of operations. The intent of the two prototypes is to demonstrate the viability of
our approach to building secure systems. In addition, the prototypes can serve as the basis for
production-quality systems. The security model, based on the message-system application, was
described in previous sections. Other elements of our approach are described here.

Family Methodology

Review of the requirements of future military message systems suggests that one system will not
suffice for all environments [8]. Several similar systems will be needed that share certain functions and
enforce military security. Because they will operate in different environments, these systems will have
important differences, e.g., in their user command languages, in the operating systems that they use,
and in the hardware on which they are implemented.
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The design problem is to exploit the similarities of these systems without unduly constraining the
individual variations that make each message system suitable for its particular environment. A message
system for intelligence analysts, for example, shares certain features with a message system for
command-center personnel, but it may be unreasonable to insist that intelligence analysts and
command-center personnel use exactly the same system.

To deal with this problem, we have adopted the family methodology [20,211. This methodology
requires developers to consider the entire family before building a single member. We are applying the
methodology to two major products: a requirements document that applies to all members and a design
document that defines a modular structure suitable for all members. In the modular structure, the
different features of family members are assigned to separate modules, so that different family
members can be produced by replacing modules without changing the overall program structure [221.
For example, two family members that are identical except for their user command languages will differ
only in their implementations of the user command language module.

Requirements Document

A major product of the project is a requirements document. Because its goal is to describe the
shared features of family members, the document excludes decisions about features that differentiate
members, e.g., decisions about user command languages, computer hardware, and operating systems.
Included in the document are a set of operations (i.e., user services), where each family member is
associated with some subset, and the security model described previously, which applies to all members.
Our requirements document adheres to the guidelines given by Heninger [23]: it describes what is
required without making design decisions; and it attempts to provide a precise, consistent, and complete
description of the requirements.

A central feature of the document is its use of an intermediate command language (ICL) [241,
the union of the sets of operations required by family members. The purpose of the ICL is to express
the user-visible behavior of family members in an abstract way. The ICL is partitioned into several
groups so that all ICL commands within a single group are associated with the same data type. In the
terms of the MMS security model, each ICL command that can affect security corresponds approxi-
mately to one or more operations, and the set of security-relevant ICL commands for a family member
corresponds to the transform for that system.

Each family member is associated with a subset of the ICL. Because differences in user command
languages do not affect the ICL, two members that perform the same operations but have different user
command languages will be associated with the same ICL subset. Given two systems in which one sys-
tem performs only a subset of the operations performed by the second, the ICL subset for the smaller
system will be contained in the ICL subset for the larger system.

Rapid Prototyping

To evaluate our requirements document, we are building rapid prototypes [25]. These allow us to
test the document for consistency, completeness, and correctness and to assess the suitability of the
chosen ICL subsets for implementation as full-scale prototypes. They also allow us to see the effects the
security model has on the user interface. More specifically, the rapid prototypes should help to answer
the following questions:

* How can the functional specifications be improved?

* How should the security model be changed?

* How can we more closely integrate the security model and the functional specifications?
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CONCLUSIONS

We favor an approach to building secure systems that includes an application-based security
model. An instance of such a model and its formalization have been presented. They are intended as
examples for others who wish to use this approach. Important aspects of the model are summarized as
follows:

* Because it is framed in terms of operations and data objects that the user sees, the model
captures the system's security requirements in a way that is understandable to users.

* The model defines a hierarchy of entities and references; access to an entity can be con-
trolled based on the path used to refer to it.

* Because the model avoids specifying implementation strategies, software developers are free
to choose the most effective implementation.

* The model and its formalization provide a basis for certifiers to assess the security of the
system as a whole.

Simplicity and clarity in the model's statement have been primary goals. The model's statement
does not, however, disguise the complexity that is inherent in the application. In this respect, we have
striven for a model that is as simple as possible but stops short of distorting the user's view of the sys-
tem.

The work reported here demonstrates the feasibility of defining an application-based security
model informally and subsequently formalizing it. The security model described has been used almost
without change by another message system project [26], and it has been adapted for use in document
preparation and bibliographic systems [27].

Judgments about the viability of our approach as a whole must await its application in building
full-scale systems. This we are pursuing in the development of message-system prototypes.
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