
A FORMAL STATEMENT OF THE MMS SECURITY MODEL

John McLean
Carl E. Landwehr

Constance L. Heitmeyer

Computer Science and Systems Branch
Information Technology Division

Naval Research Laboratory
Washington, DC 203’75

ABSTRACT

To provide a firm foundation for
proofs about the security properties
of a system specification or imple-
mentation, a formal statement of its
security model is needed. This
paper presents a formal model that
corresponds to an informal,
application-b ased security model
for military message systems (MMS)
that has been documented else-
where. Following the formal state-
ment, some considerations that led
to its present form are discussed.
The paper concludes with the state-
ment of a “Basic Security Theorem”
for the model.

1. Introduction

The Military Message System (MMS) secu-
rity model [4] comprises 15 definitions, a one-
paragraph description of NMS operation, 4
assumptions about user behavior, and 10 asser-
tions that hold for the MMS. We focus on for-
malizing the 10 assertions (shown in Figure 1)
only, although in doing so, some notation is
required to define formal entities that
correspond to those discussed informally in the
15 definitions. Below, the assertions are expli-
cated formally in definition (2) concerning sys-
tem states and definitions (5) through (11) con-
cerning the system transform. Although the
correctness of the explication cannot be pro-
ven, we discuss the correspondence between
the formalism and the informal model briefly
following the explication.

Each MMS family member can be modeled
as an automaton with inputs, an internal state,
and outputs. The inputs correspond to the
commands users give to the system. Because
this is a security model, we are principally con-
cerned with modeling the categories of inputs
that affect system security. The internal state
of the automaton corresponds to the informat-
ion currently stored in the message system --

U.S. Government work. Not protected by
U.S. copyright.

messages, message files, classifications, access
sets, and so on. Output from the automaton
consists of command responses -- the things
that users view or obtain in response to partic-
ular requests. These may include entities, parts
of entities, classification labels, and IDs. We
model output as a set of distinguished entities;
although output is treated as part of the inter-
nal state, it represents that part that is
directly visible to users. Some commands
cause a state change that affects the output
set, others may cause a change of state without
changing the output set, and still others (par-
ticularly commands that do not satisfy the
security assertions) cause no state change at
all. A history of the system is a particular
sequent+ of inputs and states.

2. Approach

We assume the existence of a set of possible
users and a set of possible entities. Given these
sets we define system state and the notion of a
secure ~tate. Next, we define system and hi.s-
to?y and introduce constraints on the
transform that moves a system from one state
to another. A system whose transform meets
all these constraints is said to be transform
secure. Finally, the notions of secure history
and secure system are defined.

The structure of the formal model is
intended to simplify its application to defining
pre-conditions and post-conditions for system
operations. To make explicit the entities that a
given operation may change, we define the con-
cept of potential modification based, in part,
on the work of Popek and Farber [6]. Potential
modification is similar to strong dependency,
developed by Cohen [2].

3. System State

In this section we define what it is to be a
system state and what it is for a system state
to be secure. We assume the existence of the
following disjoint sets.

OP is a set of operations.

L is a set of security levels. > is a partial
order on L such that (L,>) is a lattice.

188

UI

RL

us

RF

Authorization

Classification
luerarchy

Changes to
objects

Viewing

Access to
CCR
entities

Translating
mdirect
references

Labeling
requirement

Setting
clearances,
role sets,
dewce levels

Downgrading

Releasing

1.

2.

3.

4.

5.

6.

7.

&

9.

10.

Figure 1:

is a set of userid’s.

is a set of user roles.

is a set of users. For all

A user can only invoke an operation on an entity If
the user’s userID or cunent role appears m the
entity’s access set do~ with that operation and with
an index value corresponding to the operand position
m which the entity m referred to in the requested
operation.

The classification of any container is always at least
as t-ughas the maximum of the classifications of the
entitles it contains.

Information removed from an object inherits the
classification of that object. Information inserted
into an object must not be have a classification
higher than the classification of that object.

A user can only view (on some output medium) an
entity with a classification lese than or equal to the
user’s clearance and the classification of the output
medium. (This assertion applies to entitles referred
to either directly or indirectly).

A user can have ac:cess to an indirectly referenced
ent~ty within a contame r marked ‘‘Cont~ner Clear-
ance Required’ only if the user’s clearance is greater
than or equal to the classification of that container.

A user can obtain the ID for an entity that he has
referred to mdire ctly only lf he is authorized to mew
that entity vla that reference.

Any entity viewed by a user must be labeled with its
classification.

Only a user with thle role of System Securlt.y Officer
can set the clearance and role set recorded for a
userlD or the clasmfication assigned to a dence. A
user’s current role ~et can be altered only by that
user or by a user mth the role of System Security
Officer.

No classification mar~mg can be downgraded except
by a user with the role of downgrader who has
invoked a downgrad~eoperation.

No draft message can be released except by a user
mth the role of releaser. The userID of the releaser
must be recorded in the “releaser” field of the draft
message.

Assertion of the MMSSecurity Model.

UEUS,
CU(U)CL is the clearance of u,
R(u) cRL is the set of authorized roles
for u, and RO (u) sRL is the current
role set for user u.

is a set of references. This set is parti- Vs
tioned into a set, DR, of direct refer-
ences and a set, IR, of indirect refer-
ences. Although the exact nature of TY

these references is unimportant, we
assume that the direct references can
be ordered by the integers. In this Es

model we treat each direct reference as
a unary sequence consisting of a single
integer, e. g., <1’7>. Each indirect
reference is treated as a finite
sequence of two or more integers, e. g.,
<n#l, . . ,% >, where <nl> is a direct
reference.

is a set of character strings. These
strings serve primarily as entity values
(e. g., file or message contents).

is a set of message system data types
that includes “DM’ for draft messages
and “M’ for released messages.
is a set of entities. For all e GES

189

C~(e) EL is the classification of e.
CCR (e) is true if f e is marked CCR,
else fake. AS(e) C(UIuRL)x OPxfV is a
set of triples that Compose the access
set of e. (u, Op,k)EAS(e) iff u is a
userid or user role authorized to per-
form operation OF with a reference to e
as op’s k th parameter. ‘T(e)E TY is the
type of entity e. V(e)s VS is the value
of entity e. If T(e)=DM or T(e)=RM,
then V(e) includes a releaser field
RE(e), which if nonempty, contains a
use rid.

ES contains as a subset the set of
entities that are containers. For any
entity e in this set H(e)=<e 1, , “ en>
where entity ei is the tth entity con-
tained in e. The set O of output devices
is a subset of the set of containers. 1
Elements o EO serve as the domain of
two further fumctions. D(o) is a set of
ordered pairs [(XIIY1)!
(z~,y~), ~~~,(z~ ,%)] where each y+ is
displayed on o. Each Zi is either a user
or an entity, and the corresponding Vi
is either a reference or the result of
ap lying one of the above functions to
%.

B

(z, v(z)) e }70)+Z E;?wcqo) g%
the maximum classification of informa-
tion that may be displayed on o. This
allows Cli’(o) to be used as the current
upper limit of the classification of infor-
mation to be displayed by the output
device, so that users can restrict the
classification of output to be less than
the maximum level permitted.

A state maps a subset of userids and refer-
ences (intuitively, those that exist in the state
in question) to elements of US and ES that
represent their corresponding properties. A
state also maps a subset of userids that “exist”
into references that correspond to output dev-
ices (intuitively, these users are logged on to
the specified devices). To this end we define
three mappings. An id function, U, is a one-
to-one mapping from a (possibly improper) sub-
set of UI into US. A reference function, E, is a

1. In implementations,some kindsof output“disappear”
from the systemstate (e.g., informationsent to a printer
or a telecommunicationsport) whileothers persist (e.g.,
reformationdisplayedon the screen of a terminal,which
a user may later refer to andmodify). ln the formaliza-
tloni we do not distinguishbetween these types; both
are intendedto be covered by O.
2. Both the item andwhatLSdisplayedmustbe specified
so that cases in which for example, two entities have
Identical valuesbut different security levels, can be dis-
tinguished.
3. We extend the set theoretic notions of membership
and intersection to apply to tuples in the obvious sense.

mapping from a (possibly improper) subset of
RF into ES such that for all n=2
E(ci~, “ “ . ,~>)=.e if f E(<il, ~ “ ,~_l>)=e *
where e * is a container such that e is the ~ th
element of H(e *). For any reference T, if
E(r) =e, we say that r is a reference to e (rela-
tive to E). A login function, LO, is a one-to-one
mapping” from a (possibly improper) subset of
UI into RF.4

Given a reference function, E, each indirect
reference of the form <no, “ ,% > to an
entity em corresponds to a path of entities
<co, . . “ ,e,n> such that each eterng (~), e. is
denoted by the direct reference <no>, and for
all positive integers km, et is the ~ th entity
in container et-l. Such an indirect reference is
said to be based on each entity ej where
&j <m.

De&ition (1): A system stute, s, is an ordered
triple5 (U, E, LO) where U is an id function,
E is a i eference function, and LO is a login
function such that o?om(LO)cdom (U) and
rng (LO)Cdom (En(RF’x O)). We also require
that if oerng(E)~O and (z,y)E_O(o), then
z ~rng (E)urng (U) to assure that only
information about users and entities that
“exist” in the current state can actually be
displayed, and that for any reference r,
(z ,r)eD(o) + E(r)=z. Finally, we require
that E(LO(U1))=E(LO(U2)) + u ~=u2 to
prevent two users from being logged in
simultaneously on the same terminal.

Given a system state s =(U, E,LO), we
abbreviate E~r) by r$, U(u) by us, and
E(LO(?.L)) by us.

Definition (2): A state s is secure if V x, y ~
rng(E), Vo eOnrng(E), v’wedom(LO), and
Vucrng (u):

z=H(v)+CE(Z)<CE(V),

z~H(i~)+cU(w,)= CE(Z),

(z, V(z)) @(o) +(z,CE(z))@(o),

ROLE, and

CD(0)> CE(O).

4. Secure System
In this section we define what a system is

and what it is for a system to be secure.

Definition (3): A system Z is a 4-tuple
(l, S,s., T) where

4 The condition that LO is a function reflects an assumpt-
ion that a user cannot be on two terminals at the same
time. ‘Tlusassumption 1smerely for ease of exposition.
5. State is defined as a tuple, rather than as a set of
functions, because two states whose elements have the
same values are in fact identical, while two entities for
which the defied functions return the same values may
in fact be different (e.g., two copies of the same cita-
tion).

190

J is the set of well-formed system requests,
where each request ‘i =1 is of the form
<f)p,zl, zz, “ “ “ ,~> where each
zj~RFvUI~W and OPEOP;

S is the set of possible system states;

SO designates a special state called the
initial state; and

T is the system trunsf orm, i,e., a function
from UIXIXS into S.

Definition (4): A history, 12, of a system is a
function from the set of nonnegative
integers N to UIXIXS such that (1) the
third element of II(0) is so, and (2) for all
ncN, if Il(n)=(u,i,s) and
II(n+l)=(u ”,i”,s”), then T(u,i,s)=s”.

Before defining what it means for an opera-
tion to potentially modify an entity, we notice
that a reference function .&’, and a f ortioti a
state S, induces a set of functions defined on
references that are counterparts to the set of
functions introduced above that are defied on
entities. For example, there is a function, call
it V~, such that ~(r)= V(TS), SimilarIy, there is
a counterpart relation, call it Hs, such that
Hs<r,rl, . ~ ., rn>. Eachrn> iff H(r~)=<r~l,..., ~
counterpart is the user-visible version of the
corresponding entity function. We call these
counterparts, re f erentia.1 counterparts and
use them to define what it means for two states
to be equivalent except for a set of references. 6

States s =(U, E, LO) and s*=(U’,E”,LO”)
are equivalent except for some set of refer-
ences S if f (1) U= U*, (2) LO=LO”, (3)
dom (E)=o!mn (E*), (4) for any entity func-
tion F except V, F= =FS ●, and (5) for any
reference T=dom (E)NS, ~(r)= ~~(r).

We now define potential modification as follows:

u,~, s potentially modify r iff ~ sl,s~: S1
is equivalent to s except possibly for some
set of references and Z’(U ,i ,s l)=s ~ and

V(T.J # V(rsi).

Call y a contributing factor in such a case
iff ~ S1 as above and s2,s~: SI and S2 are
equivalent except for [y) and Z’(u,i, s2)=s~
and V(r~;) # V(r~;).

That is, u ,i ,s potentially modifies T if there is
some (second) state that may differ from s in
the values of some entities, and T maps u ,i,
and this state into a third state in which r‘s
value differs from that which it had in the
second state. The contributing factors are

6. We could have developed the entire formal model m
terms of ref erentlal counterparts, but preferred the sim-
plicity of functions to workm.gwith the relations H. end
LO,.
7. This covers cases of creation (and deIetion)since
V(T81)tillbe undefined ad V(r,i)wUl be defhed

(although possibly empty).

th,ose entities whose va]ue5 affect r‘s fial
value.

For each referential counterpart and each
function defined on users, we posit a tique
operation that changes an entity or user with
respect to that function. For example, an
operation set_AS (r ,new_access_set) is the
only operation that affects r‘s access set, and
it has no other user-visible effect. Further, if
the transition is, e. g., from state s to state s*,
A&.(r) is new-accessaef if new_access_set
is a character string and V~(n,ew_access_set)
if new_accessget is an entity reference.
Chlanges to the domain of E or U (creation or
deletion of entities or users) are also assumed
to occur only by explicit request. The formal
release operation defined below is the single
exception to this assumption; it changes the
tUDe of r and, potentially, the releaser field of
r‘s value as well.

The exact nature of these operations is
unimportant since these assumptions are
included solely for ease of exposition. Their
purpose is not to rule out implementation com-
mands that affect different parts of entities,
but to eliminate the problem of unspecified
sicie effects in the formal model (e.g., permis-
sicm to view a message marked CCR is not per-
mission to clear the CCR mark). Implementa-
ticm commands that can alter more than a sin-
gle part of a single entity correspond to a
sequence of formal operations. For a given

implementation, this correspondence is deter-
mined by the semantics of the implementation
command language. Once this correspondence
has been determined, so that the security-
relevant effects of each user command, are
clear, 1 can be replaced by the set of imple-
mentation commands with access sets also
changed accordingly. Nevertheless, prudence
dictates that modifications that can be made
only by the security of fice-r (e. g., changing a
user’s clearance), be restricted so that there is
only a single command that performs them in
any implementation.

The following constraints on the system
transform lead to the definition of a
secure history and a secure system. Where
quantification is not explicit below, universaI
quantification is assumed.

Definition (5): A transform T is access secure
i~~ ~u,i,s,s”: T(u,i,s)=s”, [(opein OP
and 7’k~’inl?F) -+ ((u,op ,k)~.AS(E(Tk)) or
~;~~(u.) and (l, Op,k)elS(E(Tk)))] or

=.

8, For sunplicity we disregard error messages in tie for.
maiism. In an implementation we assue that ifan
unauthorized operation 1sattempted, an appropriate er-
ror message will be produced in the next state,

191

Definition (6): A transform T is
co~ secure if f ~u,i,s ,s *: T(u,i,s)=s *,
z is potentially modified with y as a contri-

buting factor + CJ’(ZS)aCE(y~).

Definition (7’): A transform T is
CCR secure if f Vu,i,s ,s *: T(u ,i,s)=s *,
r~inIR k based on y and CCl?(y) and z is
potentially modified with r as a contribut-
ing factor + CU(uS)2 CE(y).

Definition (8): A transform T is translation
secure if f ~uAi,s ,s *: T(u,i,s)=s *, ZCDR
and (z~~,z)cD(u~*) + ~ r=i flRF, r~ =zS and
(r is based on z and CCR(Z) +
CU(U,)2KZ’(Z)).

Definition (9): A transform T is set secure if f
~u,i,s,s*: T(u,i,s)=s*,
(a) ~o 6dom(En(RFxO)), CD(o~)#CD(o.~)

or %~dom(U), CU(Z.)#CU(ZSe) or
~’~) #R (z..) + security_of f icer cRO(u~);

(b) z=dorrz(U) and RO(z.)#RO(z.,) +
~ =z~ or security_of f icer cRO(~).

Definition (10): A transform T is downgrade
secure iff Vt.4,i,s,s*: T(u,i,s)=s*,
z~dom(EN(RFx@~/)) and CE(Z~)>CE(Z~~)
+ doumgrader ERO (us).

Definition (11): AV~~f~rn T is release

secure if f T(u,i,s)=s*,
(T(z~)=RM + T(z&~M “ and
R.E(z.*)=RE(z~))
and (T(z~)#RM and T(z,x)=R.M

+ RE(zS~)=u, ~: r~ =Z$, i is the operation
<release ST>, reLeasereRO(us) and
T(z=)=DM).

Definition (12): A transform is
transform secure iff it is access secure,
copy secure, CCR secure, translation
secure, set secure, downgrade secure, and
release secure,

Definition (13): A history is secure if all its
states are state secure and its transform is
transform secure.

Definition (14): A system is secure if each of its
histories is secure.

5. Discussion

Perhaps the most basic decision we made
in formalizing the MMS model concerned our
general conception of a computer system, in
particular the relation between a system state
and a system. We considered a view where a
system state consists of entities and their rela-
tions, and a system adds to this users and user
operations on entities. Hence, all restrictions
on user properties (in particular, the restric-
tion that for all u, RO (u)cR (u)) are included
in the definition of a secure system. We chose
instead to view the distinction between system

states and systems in terms of static as
opposed to dynamic properties. Static proper-
ties are those that hold of all secure states and
hence, can be checked by examining a state in
isolation; dynamic properties are those that
need only hold for the relation between secure
states and hence, can be checked only by com-
paring two or more states. In the view we
adopted, all static security properties are
included in the definition of a secure state.

To a large extent the choice in conceptuali-
zations is a matter of taste. Bell and LaPadula
[1] use the latter, while [3] leans to the former.
By minimizing the notion of a secure state, the
former view makes the Basic Security Theorem
shorter. The deciding factor in our adopting the
latter view is that it makes it impossible for a
system to undergo a security-relevant change
without undergoing a change in state.

Principal difficulties we encountered in for-
malizing the MMS security model were in
representing “copy” and “view”, system output,
and the notion of an authorized operation.
Assertion 3 (“changes to objects”) in the infor-
mal model requires formal semantics to reflect
the movement of information between entities,
while assertion 4 (“viewing”) requires formal
semantics to reflect making an entity visible to
a user. Assertion 5 (“accessing CCR entities”)
now addresses both cop ying and viewing. The
semantics for “copy”, embodied in the
definitions of “potential modification” and ‘cont-
ributing factor”, are based on a broad
interpretation of “copy.” Information is con-
sidered to be copied, not only if it is directly
moved from one entity to another, but also if it
contributes to the potential modification of
some other entity. For example, if an opera-
tion scans message file A and copies messages
selected by a filter F to message file B, both A
and F contribute to the potential modification
of B (and are therefore subject to the con-
straints imposed by copy secure and
CCR secure), even if both A and F are empty.
The semantics for “view” are straightforward: a
thing is viewed if an operation makes it a
member of an output container. In light of
these considerations, we have broadened asser-
tion 5 from earlier drafts to use “access” in
place of “view”.

In the formalization, system output is inter-
preted as a set of containers; other entities,
parts of entities, references, and classifications
that are made visible to a user are interpreted
as being copied to his output container. We
assume that in any implementation the
classifications displayed appear close to the
entities (or parts) the y correspond to, but we
have not formalized this assumption. Refer-
ences are explicitly included as a part of output

192

because the same operation applied to the
same entities can yield clifferent results
depending on how the entities are referenced.
This leads to the constraint (tmm.skztion
secure) on operations that produce as output
direct references that are translations of
indirect ones. To enforce this constraint, the
system must recognize references as a particu-
lar kind of output.

Formalizing the concept of an authorized
operation is difficult because the semantics of
authorized operations are unspecified. Our
definition of access secure requires that, if an
operation changes the system state or pro-
duces output (beyond an error message), then
for each entity in the set of operands, the user
or role, operation, and operand index must
appear in the access set. Unauthorized opera-
tions must not alter the system state except to
report that they are erroneous.

6. Correspondence to the Informal Model

Assertions (2), (4), and (’i’) of the informal
model, concerning classification hierarchy,
viewing, and labeling, are incorporated in the
formal definition of secure state. The y
correspond respectively to the first three con-
ditions a secure state must satisfy; the last two
conditions require that each user’s current role
set must be a subset of his authorized role set
and that the current security level of each out-
put device must be dominated by its maximum
allowed level. These last two conditions are
implicit in the informal model.

The remaining assertions of the informal
modeI have been translated into constraints on
the system transform. Assertion (1) (authori-
zation) corresponds directly to access secure,
assertion (6) to translation secure, and asser-
tions (8)-(10) (setting, downgrading, and releas-
ing) correspond respectively to set secure,
downgrade secure, and release secure.
Set secure has been expanded from earlier
drafts to restrict the setting of device
classifications and user role sets to security
officers and to restrict the setting of a user’s
current roIe to himself or a security officer.
LJowngrade secure contains an exception for
us so that a user is not prohibited from lower-
ing the current level of his output device. The
formal statement of rele a-se secure makes
explicit the requirement that, once released, a
message cannot have its type or releaser field
altered.

Assertions (3) and (5) correspond to
copg secure and CCR secure. The definition of
cow secure actually covers parts of both
assertion 3 and assertion 4 because output dev-
ices are treated as a set of containers. So, if
entity z receives information from an object u,

CiT(z)>CE(y) (assertion 3), and that if an out-
put container o receives information from
entity x, CIZ’(0)> CJi’(z) (assertion 4).
CCR secure corresponds to assertion 5, under
th,e interpretation that having access to an
entity is significant only if that entity is a con-
tributing factor in the potential modification of
another entity.

‘1’. Storage Channels

Because we have defined “potential
modification” and “contributing factor” in
terms of changes only to the value of an entity,
th,e constraints imposed by copy secure and
CCR secure do not apply to changes made to
other functions defined on entities
(classification, CCR mark, access set, and type)
or those defined on users (clearance, role set,
and current role). Thus, there is the potential
for information to be transferred from a higher
level to a lower one through these functions.
Hc~wever, changes to user clearances and role
sets are controlled by set secure; changes to
classifications are controlled by
ohm.grade secure ; changes to entity type will
generally be restricted severely by the seman-
tics of the message system; and changing a
CCR mark provides only a single bit of informa-
ticm at a time. Changes to the access set for an
entity could provide a higher rate of informa-
ticm trzmsfer, and if this were a serious con-
cern, the definitions in question could be
modified to include changes of this kind. We
chose not to include these because our princi-
pal concern is with changes to the values of
entities, and the added notational complexity
wculd only cloud the presentation. We have left
fol” others the problem of dealing with
classifications that are themselves classified,
such as highly sensitive compartment names.

8. A Basic Security Theorem for the Formal
3DiS Security Model

In formalization where a secure system is
a collection of secure states, some feel that a
Basic Security Theorem is needed to show the
restrictions on system transforms that insure
that a system starting in a secure state will not
reach a state that is not secure. 9 Such
thleorems are of little practical significance,
since their proofs do not depend on the partic-
ular definition of security provided by the
model [5]. Further, in our approach such a
thleorem is not pressing since the concept of a
secure system is defined largely in terms of a
secure transform. Nevertheless, we do appeal
to, the notion of a secure state, and some
readers may feel that some form of Basic Secu-

9. See forexample [1].

1 Y-1

rity Theorem is needed. Those readers should [5] J. McLean, “A Comment on the Basic Secu-
find it trivial to prove the following analog of
the Basic Security Theorem for our defiition of

rity Theorem of Bell and LaPadula, ” submit-
ted for publication, 1983.

a secure state. [6] G. J. Popek and D. A. Farber, “A Model for
Verification of Data Security in Operating

Theorem: Every state of a system Z is secure if Systems,” Communications oj the ACM.,
so is secure and T meets the following con- Vol. 21, No. 9 (Sept. 197’8) pp. ?’3’7-7’49.
ditions for all u,i,s ,s% T(u,i,s)=s* and for
all x ,y ~RF, w ~ US:

1. z~gH(I/~) and z~.EI#(y~*) +

cE(z,.)scE(y**).

2. z. SH(IJ~) and CE(Z,*)A CY?(V~*) +
z=*EH(y~ .) .

3. z, EH(ti,) and z@H(ti~*) -
cu(?o~.)>m(z~.).

4. z~ cH(@ and CU(WS*)>CE(Z~e) +
zelf(w~.).

5. (zs, V(ZS))Atis -and (z~., V(ZS.))=ti~. + ..
(Z.*, CE(Z..))E’W. *.

6. (zS , V(Zs))@@nd (z~*, CYXZs*))Ktis* +
(z~., v(z..))zw~,.

i’. R(w~)#R(w~~) or RO(w~)#RO(w~*) +
RO(w.,)SR(w~~).

8. CE(fi=~#CE(tis.~ or CD(~.)# CD(~..)
+ CD(w~t)>CE(w=*).

Together, (l)-(8) are necessary and
sufficient conditions for every state of a system
to be secure in any system that does not con-
tain states that are unreachable from so.

Acknowledgements

Jon Millen’s helpful comments on two drafts
of this paper led to substantial improvements
in it.

References

[1] D. E. Bell and L. J. LaPadula, “Secure Com-
puter System: Unified Exposition and Mul-
tics Interpretation,” M74-244, MITRE Corp.,
Bedford, MA, July, 197’5.

[2] Ellis Cohen, “Information Transmission in
Computational Systems, ” Proc. 6th ACM
Symp. Operating Systems principles, ACM
SIGOPS @crating System Rev., Vol 11,
No. 5 (Nov. 197’7) pp. 133-139.

[3] R. J. Feiertag, K. N. Levitt, and L. Robinson,
“Proving Multilevel Security of a System
Design, ” in Proc. 6th ACM Symp. (?percu%ng
Systems Principles, ACM SIGOPS Qoenzt-
ing System Rev., Vol. 11, No. 5 (Nov. 1977)
pp. 5?-65.

[4] C. E. Landwehr, C. L. Heitmeyer, al.d J.
McLean, “A Security Model for Military Mes-
sage Systems,” NRL Report, to appear fall,
1983. (Also submitted for external publica-
tion.)

194

