
A Security Model for Military Message 
Systems 
CARL E. LANDWEHR, CONSTANCE L. HEITMEYER, and JOHN McLEAN 
Naval Research Laboratory 

Military systems that process classified information must operate in a secure manner; that is, they 
must adequately protect information against unauthorized disclosure, modification, and withholding. 
A goal of current research in computer security is to facilitate the construction of multilevel secure 
systems, systems that protect information of different classifications from users with different 
clearances. Security models are used to define the concept of security embodied by a computer system. 
A single model, called the Bell and LaPadula model, has dominated recent efforts to build secure 
systems but has deficiencies. We are developing a new approach to defining security models based on 
the idea that a security model should be derived from a specific application. To evaluate our approach, 
we have formulated a security model for a family of military message systems. This paper introduces 
the message system application, describes the problems of using the Bell-LaPadula model in real 
applications, and presents our security model both informally and formally. Significant aspects of 
the security model are its definition of multilevel objects and its inclusion of application-dependent 
security assertions. Prototypes based on this model are being developed. 

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]:  General-- 
Security and protection; D.4.6 [Operating Systems]: Security and Protection--access controls; 
information flow controls; verification; F.3.1 [Logics and Meaning of Programs]:  Specifying and 
Verifying and Reasoning about Programs--assertions; invariants; specification techniques; H.4.3 
[Information Systems Applications]: Communications Applications--electronic mail 

General Terms: Security, Verification 

Additional Key Words and Phrases: Storage channels, message systems, confinement 

1. INTRODUCTION 

A s y s t e m  is s e c u r e  i f  i t  a d e q u a t e l y  p r o t e c t s  i n f o r m a t i o n  t h a t  i t  p r o c e s s e s  a g a i n s t  
u n a u t h o r i z e d  d i sc losure ,  u n a u t h o r i z e d  m o d i f i c a t i o n ,  a n d  u n a u t h o r i z e d  w i t h h o l d -  
ing  (also ca l l ed  d e n i a l  o f  service) .  W e  say  " a d e q u a t e l y "  b e c a u s e  no  p r a c t i c a l  
s y s t e m  can  ach ieve  t h e s e  goa ls  w i t h o u t  qua l i f i c a t i on ;  s e c u r i t y  is i n h e r e n t l y  
re la t ive .  A secure  s y s t e m  is m u l t i l e v e l  s e c u r e  i f  i t  p r o t e c t s  i n f o r m a t i o n  o f  d i f f e r e n t  
c l a s s i f i c a t i ons  f rom use r s  w i t h  d i f f e r e n t  c l ea rances ;  t h u s  s o m e  u s e r s  a r e  n o t  
c l e a r ed  for  a l l  o f  t h e  i n f o r m a t i o n  t h a t  t h e  s y s t e m  p rocesses .  

S e c u r i t y  m o d e l s  have  been  d e v e l o p e d  b o t h  to  d e s c r i b e  t h e  p r o t e c t i o n  t h a t  a 
c o m p u t e r  a c t u a l l y  p r o v i d e s  a n d  to  de f ine  t h e  s e c u r i t y  ru les  i t  is r e q u i r e d  to  
en fo rce  [14]. In  ou r  view, a s e c u r i t y  m o d e l  s h o u l d  e n a b l e  u se r s  to  u n d e r s t a n d  
how to  o p e r a t e  t h e  s y s t e m  ef fec t ive ly ,  i m p l e m e n t o r s  to  u n d e r s t a n d  w h a t  s e c u r i t y  
c o n t r o l s  to  bu i ld ,  a n d  ce r t i f i e r s  to  d e t e r m i n e  w h e t h e r  t h e  s y s t e m ' s  s e c u r i t y  

Authors' address: Computer Science and Systems Branch, Information Technology Division, Naval 
Research Laboratory, Washington, D.C. 20375. 
1984 ACM 0734-2071/84/0198-0222 $00.00 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984, pages 198-222. 



A Security Model for Military Message Systems • 199 

controls are consistent with the relevant policies and directives and whether 
these controls are implemented correctly [13]. 

In recent years, the Bell and LaPadula model [4, 8], has dominated efforts to 
build secure systems. The publication of this model advanced the technology of 
computer security by providing a mathematical basis for examining the security 
provided by a given system. Moreover, the model was a major component of one 
of the first disciplined approaches to building secure systems. 

The model describes a secure computer system abstractly, without regard to 
the system's application. Its approach is to define a set of system constraints 
whose enforcement will prevent any application program executed on the system 
from compromising system security. The model includes subjects, which represent 
active entities in a system {such as active processes), and objects, which represent 
passive entities (such as files and inactive processes). Both subjects and objects 
have security levels, and the constraints on the system take the form of axioms 
that control the kinds of access subjects may have to objects. 

One of the axioms, called the *-property ("star-property"), prohibits a subject 
from simultaneously having read access to one object at a given security level 
and write access to another object at a lower security level. Its purpose is to 
prevent subjects from moving data of a given security level to an object marked 
with a lower security level. Originally, the model applied this constraint to all 
subjects, since a subject might execute any arbitrary application program, and 
arbitrary programs executed without this constraint could indeed cause security 
violations. 

A system that strictly enforces the axioms of the original Bell-LaPadula model 
is often impractical: in real systems, users may need to invoke operations that, 
although they do not violate our intuitive concept of security, would require 
subjects to violate the *-property. For example, a user may need to extract an 
UNCLASSIFIED paragraph from a CONFIDENTIAL document and use it in 
an UNCLASSIFIED document. A system that strictly enforces the *-property 
would prohibit this operation. 

Consequently, a class of trusted subjects has been included in the model. These 
subjects are trusted not to violate security even though they may violate the 
*-property. Systems based on this less restrictive model usually contain mecha- 
nisms that permit some operations the *-property prohibits, for example, the 
trusted processes in KS OS [ 17 ] and SIGMA [ 1 ]. The presence of such mechanisms 
makes it difficult to determine the actual security policy enforced by the system 
and complicates the user interface. 

To avoid these problems, we propose a different approach. Instead of starting 
with an application-independent abstraction for a secure computer system and 
trying to make an application fit on top of it, we start with the application and 
derive the constraints that the system must enforce from both the functional 
and security requirements of the application. In this way, it is possible to 
construct a set of assertions that is enforced uniformly on all the system software. 

To evaluate our approach, we have formulated a security model for a family of 
military message systems. Defining an application-based security model is part 
of a larger effort whose goals are (1) to develop a disciplined approach to the 
production of secure systems and (2) to produce fully worked-out examples of a 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



200 • C.E. Landwehr, C. L. Heitmeyer, and J. McLean 

requirements document and a software design for such systems. In this paper, 
we introduce the message system application, discuss the Bell-LaPadula trusted 
process approach to building secure systems, and present a security model for 
military message systems both informally and formally. 

2. REQUIREMENTS OF MILITARY MESSAGE SYSTEMS 

In recent years, automation has been applied increasingly to the handling of 
military messages [10]. While the primary purpose of military message systems 
is to process formal messages (i.e., official messages exchanged by military 
organizations), such systems may also handle informal messages (i.e., unofficial 
messages exchanged by individuals). Formal messages are transmitted over 
military networks, such as AUTODIN; their format and use is governed by 
military standards. Examples of informal messages are those currently supported 
by several message systems (e.g., HERMES [19]) available on the ARPA network. 

2.1 Functional Requirements 

Message system operations may be organized into three categories: operations 
on incoming messages, operations on outgoing messages, and message storage 
and retrieval. Operations in the first category permit a user to display and print 
messages he has received. Second-category operations support the creation, 
editing, and transmission of outgoing messages. Message storage and retrieval 
operations allow users to organize messages into message files and to retrieve 
messages via single keys (e.g., message id) or combinations of keys (e.g., subject 
and originator). Typically, military systems that process formal messages provide 
the same operations as systems that process informal messages plus several 
additional operations, such as distribution determination, action and information 
assignment, and release [10]. 

2.2 Security Requirements 

Each formal military message is composed of several fields, including To, From, 
Info, Date-Time-Group, Subject, Text, Security, and Precedence. A classification, 
such as UNCLASSIFIED or SECRET, is assigned to each field and to some 
subfields, for example, the paragraphs of the Text field; further, the overall 
message has a classification that is at least as high as that of any field or subfield. 
Thus, the Subject field of a message may be classified at a lower level than the 
message as a whole, and two paragraphs of the Text field may have different 
classifications. 

In some data processing applications, users process information at a single 
security level for long periods of time. In contrast, message system users often 
need to handle data of several classifications during a single computer session. 
For example, a user may wish to compose an unclassified message based in part 
on a previous classified message he has received. To accomplish this, he must 
simultaneously display the classified information and compose the unclassified 
message. As a further example, the user may wish to scan newly arrived messages 
and print only those that are unclassifed. To do so, he must display data of 
several different classifications and then print a hard copy only of the unclassifed 
data. 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



A Security Model for Military Message Systems • 201 

Military message systems are required to enforce certain security rules. For 
example, they must insure that users cannot view messages for which they are 
not cleared. Unfortunately, most automated systems cannot be trusted to enforce 
such rules. The result is that many military message systems operate in "system- 
high" mode: each user is cleared to the level of the most highly classified 
information on the system. A consequence of system-high operation is that all 
data leaving the computer system must be classified at the system-high level 
until a human reviewer assigns the proper classification. 

A goal of our research is to design message systems that are multilevel secure. 
Unlike systems that operate at system-high, multilevel secure systems do not 
require all users to be cleared to the level of the highest information processed. 
Moreover, information leaving such a system can be assigned its actual security 
level rather than the level of the most highly classified information in the system. 
Unlike a system that operates at system-high, a multilevel system can preserve 
the different classifications of information that it processes. 

3. EXPERIENCE WITH THE BELL-LAPADULA MODEL AND TRUSTED 
PROCESSES 

While its complete formal statement is lengthy and complex, the Bell-LaPadula 
model may be briefly summarized by the following two axioms: 

(a) the simple security rule, which states that a subject cannot read information 
for which it is not cleared ("no read up"), and 

(b) the *-property, which states that a subject cannot move information from an 
object with a higher security classification to an object with a lower classifi- 
cation ("no write down"). 

These axioms are to be enforced by restricting the access rights that subjects, for 
example, users and processes, have to objects, for example, files and devices. 

A less frequently described part of the Bell-LaPadula model is its concept of 
trusted subjects, that is, subjects that are allowed "to operate without the extra 
encumbrance of the *-property" because they are trusted "never [to] mix infor- 
mation of different security levels" [3]. More precisely, a trusted subject can have 
simultaneous read access to objects of classification x and write access to objects 
of classification y, even if the classification of y is less than the classification of 
x. The formal statement of the Bell-LaPadula model places no constraints on 
the trusted subject's violations of the *-property. 

A number of projects have used the Bell-LeiPadula model to describe their 
security requirements. In these projects, strict enforcement of the Bell-LaPadula 
axioms without trusted subjects has proved to be overly restrictive. Hence, trusted 
processes have been introduced as an implementation of the concept of trusted 
subjects. Below, we summarize experience with the Bell-LaPadula model and 
trusted processes in four projects: the Military Message Experiment (MME), the 
Air Force Data Services Center (AFDSC) Multics, the Kernelized Secure Oper- 
ating System (KSOS), and the Guard message filter. 

3.1 MME 

The MME's goal was to evaluate the utility of an interactive message system in 
an operational military environment [23]. During the MME, more than 100 

ACM Transactions on Computer Systems, Vol, 2, No, 3, August 1984. 



202 • C.E. Landwehr, C. L. Heitmeyer, and J. McLean 

military officers and staff personnel used SIGMA, the message system developed 
for the experiment, to process their messages [21( 22]. Although SIGMA was 
built on the nonsecure TENEX operating system, its user interface was designed 
as though it were running on a security kernel (i.e., a minimal, tamperproof 
mechanism that assures that all accesses subjects have to objects conform to a 
specified security model). SIGMA's user interface was designed so that  it would 
not change if SIGMA were rebuilt to operate with a security kernel. 

During the planning phase of the MME, it was decided that  SIGMA would 
enforce the Bell-LaPadula model [ 1]. This decision led to a number of difficulties, 
three of which are described below. The first problem arose from the initial 
decision, later changed, to adopt the model without trusted subjects; the other 
two problems apply to Bell-LaPadula with or without trusted subjects. 

--Prohibition of write-downs. The *-property of Bell-LaPadula disallows write- 
downs; yet, in certain cases, message system users need to lower the classification 
of information. For example, a user may create a message at TOP SECRET, and, 
after he has entered the message text, decide that the message classification 
should be SECRET. A system that  strictly enforces the *-property would prohibit 
a user from reducing the message classification. The user would be required to 
create a new message at SECRET and re-enter the text. 

--Absence of multilevel objects. Bell-LaPadula recognizes only single-level 
objects; some message system data objects (e.g., messages and message files) are 
inherently multilevel. A computer system that treats a multilevel object as single- 
level can cause some information to be treated as more highly classified than it 
really is. For example, when a user of such a system extracts an UNCLASSIFIED 
paragraph from a SECRET message, the system labels the paragraph SECRET 
even though the paragraph is actually UNCLASSIFIED. 

--No structure for application-dependent security rules. Military message sys- 
tems must enforce some security rules that  are absent in other applications. An 
example is a rule that allows only users with release authority to invoke the 
release operation. 1 Such application-dependent rules are not covered by Bell- 
LaPadula, and, hence, must be defined outside of it. 

To address the first problem (and, to some extent, the third), the SIGMA 
developers designed a trusted process that is not constrained by the *-property 
and is, therefore, permitted to perform write-downs. For example, a SIGMA user 
could search a file containing both UNCLASSIFIED and SECRET messages 
and then display an UNCLASSIFIED message whose citation was returned by 
the search; such an operation required the intervention of the trusted process 
since the message citation was transmitted from the SECRET process that  did 
the search to the UNCLASSIFIED process that  handled the message display. 
Unlike the Bell-LaPadula model, which puts no explicit constraints on write- 
downs performed by the trusted subjects, SIGMA's trusted process narrowly 
limited the cases in which write-downs were permitted. Ames [1] provides further 
details on the role of the trusted process in SIGMA. 

1 Releasing a message  is secur i ty- re levant  because it allows a wider set  of  users  to view the  message  
and  because it certifies t ha t  a par t icular  mil i tary organizat ion or iginated the  message.  

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



A Security Model for Military Message Systems • 203 

SiGMA's use of a trusted process was helpful in that it relaxed the rigid 
constraints of Bell-LaPadula, thus permitting users to perform required opera- 
tions. However, adding the trusted process also caused a serious problem: it made 
the security policy that SIGMA enforced difficult to understand. Interviews held 
during the MME revealed that few SIGMA users clearly understood the security 
policy that was being enforced. It was an assumption of SIGMA's design that  
user confirmation of security-relevant operations would prevent security viola- 
tions. However, because users issued confirmations without comprehending why 
these confirmations were needed, this assumption was unwarranted. 

3.2 AFDSC Multics 

In the mid-1970s, Multics was modified to include the Access Isolation Mecha- 
nism (AIM). This version of Multics, which has been used at the ADFSC for 
several years, supports the assignment of security levels to processes and seg- 
ments and enforces the Bell-LaPadula model. Multics-AIM also contains trusted 
functions, invoked via a special operating system gate, to enforce access control 
on objects smaller than a segment, to allow security officers to downgrade files 
in response to user requests, and to provide other "privileged" operations. 

Although Multics-AIM is generally considered a success, experience with it at 
the AFDSC illustrates some difficulties that arise from strict enforcement of the 
Bell-LaPadula axioms and from the use of trusted functions. For example, if a 
user operating at the TOP SECRET level wishes to send an UNCLASSIFIED 
message to another user operating at the SECRET level, Multics-AIM requires 
that the message be treated as though it were TOP SECRET. The recipient is 
not notified of its arrival until he logs in as a TOP SECRET user. 

Problems also occur when a user operating at a low security level tries to send 
mail to a user at a higher level. Mailbox segments in Multics-AIM are special: 
they have both a minimum and maximum access level. The minimum is defined 
by the level of the directory that contains the mailbox segment. Thus, a user 
operating at UNCLASSIFIED is prohibited from sending a message to a mail- 
box located in a SECRET directory. In this case, the mail could not be sent 
unless the sender were to log out and log back in at the SECRET level. Because 
this situation arises frequently, system administrators are allowed to invoke a 
trusted function that permits them to send mail without logging out and logging 
back in again. 

3.3 KSOS 

KSOS [17] was to be a security-kernel based system with a UNIX-compatible 
program interface on a DEC PDP-11. The KSOS security kernel was designed 
to strictly enforce the axioms of the Bell-LaPadula model on user-provided 
programs. To handle those situations where strict enforcement is incompatible 
with functional requirements, the kernel recognizes certain "privileges" that 
allow some processes to circumvent parts of this enforcement. These privileges 
include the ability to violate the *-property to change the security or integrity 
level [5] of objects, and to invoke certain security kernel functions. 

KSOS developers defined a special category of software, called Non-Kernel 
Security Related (NKSR), that supports such privileges. For example, the "Secure 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



204 • C.E. Landwehr, C. L. Heitrneyer, and J. McLean 

Server" of the KSOS NKSR allows a user to reduce the security level of files he 
owns and to print a file classified at a lower security level without raising the 
security level of the printed output to the level of this process. Both of these 
operations would be prohibited by strict enforcement of the Bell-LaPadula 
axioms. 

3.4 Guard 

The Guard message filter [24] is a computer system that supports the monitoring 
and sanitization of queries and responses between two database systems operating 
at different security levels. When a user of the less sensitive system requests data 
from the more sensitive system, a human operator of the Guard must review the 
response to ensure that it contains only data that the user is authorized to see. 
The operator performs this review via a visual display terminal. 

One version of the Guard is being built on a security kernel that  enforces the 
axioms of the Bell-LaPadula model. However, strict enforcement of the 
*-property is not possible since a major requirement of the Guard system is to 
allow the operator to violate it, that  is, to allow information from the more 
sensitive system to be sanitized and "downgraded" (or simply downgraded), so 
that it can be passed to systems that  store less sensitive information. An 
important component of this version's design is the trusted process that  performs 
this downgrading. 

3.5 Lessons Learned 

Experience has shown that, on one hand, the axioms of the Bell-LaPadula model 
are overly restrictive: they disallow operations that  users require in practical 
applications. On the other hand, trusted subjects, which are the mechanism 
provided to overcome some of these restrictions, are not restricted enough. The 
formal model provides no constraints on how trusted subjects violate the 
*-property. Consequently, developers have had to develop ad hoc specifications 
for the desired behavior of trusted processes in each individual system. While 
such an approach relaxes the rigid enforcement of the *-property, it introduces 
two additional problems: 

(1) Use of the axioms in conjunction with trusted processes makes it difficult 
to determine the exact nature of the security rules that  a system enforces. In the 
MME and the other three projects described, the security rules enforced by the 
system as a whole are not the same as the axioms of the model. The actual 
security rules enforced by each system include both the axioms of the Bell- 
LaPadula model and the exceptions allowed by the trusted processes. 

(2) Because the actual policies in practical systems deviate from the Bell- 
LaPadula axioms, any inductive proof that  such a system maintains a secure 
state, based on strict enforcement of the axioms of the model, is a proof about 
only part of the system and cannot apply to the entire system. 

Moreover, trusted subjects do not address directly 2 the two other problem areas 
of the Bell-LaPadula model discussed above, that  is, its failure to support 

2 Indirectly, trusted subjects can implement any arbitrary security policy. For example, a trusted 
subject that acts as  a t y p e  m a n a g e r  c a n  provide multilevel objects, and application-dependent security 
rules can be enforced by making controlled operations available only through trusted subjects. Our 
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



A Security Model for Military Message Systems • 205 

multilevel objects and its lack of a structure for including application-dependent 
security rules. 

4. MILITARY MESSAGE SYSTEM (MMS) SECURITY MODEL 

Our goal is to define a single, integrated security model that  captures the security 
policy that a military message system must enforce, without mentioning the 
techniques or mechanisms used to implement the system or to enforce the policy. 
The security model defined below is intended to allow users to understand security 
in the context of message systems, to guide the design of military message 
systems, and to allow certifiers to evaluate such systems. The model presented 
here is informal; it is the basis for the formal model presented in the following 
section. 

In this section we define some terms, use them to describe how a user views 
the system's operation, and state assumptions and assertions, based on the terms 
and the user's view of operation, that are intended to be sufficient to assure the 
security of the system. The security model comprises the definitions, user's view 
of operation, the assumptions, and the assertions. It is a revision of earlier work 
[13, 16]. 

This model does not address auditing, although secure message systems clearly 
require auditing mechanisms. The existence of an audit trail may deter potential 
penetrators, but auditing is primarily a technique for providing accountability 
and for detecting security violations after the fact. The security model focuses 
on assertions that, if correctly enforced, will prevent security violations. Conse- 
quently, assertions and assumptions about auditing do not appear, in a more 
detailed system specification, auditing requirements would be explicit. 

The model itself places no constraints on the techniques used to implement a 
military message system or to verify that  a particular system correctly enforces 
the assertions of the model. An implementation based on a complete formal 
specification and proof of correctness would be as admissible as one based on a 
security kernel and trusted processes, or even one employing standard software 
engineering techniques for design, testing, and validation. By separating the 
statement of the security model from the concerns of implementation and 
verification, we can allow for advances in these areas without depending on them. 

4.1 Definitions 

The definitions below correspond in most cases to those in general use and are 
given here simply to establish an explicit basis for the model. We distinguish 
between objects, which are single-level, and containers,  which are multilevel. We 
also introduce the concept of user roles, which define job-related sets of privileges. 

Classif icationa--a designation attached to information that reflects the damage 
that could be caused by unauthorized disclosure of that information. A classifi- 
cation includes a sensitivity level (UNCLASSIFIED, CONFIDENTIAL, SE- 

point here is that the notion of trusted subjects in itself serves only to draw a circle around the 
aspects of security policy not addressed by the axioms of the Bell-LaPadula model. It does not provide 
any framework for formulating that policy. 
3 This definition corresponds to that used by other authors for security level. In this paper, security 
level and classification are synonyms. 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



206 • C.E. Landwehr, C. L. Heitmeyer, and J. McLean 

CRET,  or T O P  SECRET)  and a set of zero or more compar tments  (CRYPTO,  
NUCLEAR,  etc.). The  set of classifications, together  with the relation defining 
the allowed informat ion flows between levels, form a lattice [7]. Most  dissemi- 
nation controls, such as NATO,  NOFORN,  and N O C O N T R A C T O R ,  can be 
handled as additional compar tment  names. 

Clearance--the degree of t rus t  associated with a person. This  is established on 
the basis of background investigations and the tasks performed by the person. It  
is expressed in the same way as classifications are, as a sensitivity level and a 
{possibly null) compar tment  set. In a secure MMS,  each user will have a 
clearance, and operat ions per formed by the MMS  for tha t  user may  check the 
user's clearance and the classifications of objects to be operated on. Some other  
characterist ics of a user, such as his nat ional i ty  and employer,  may also be t rea ted  
as par t  of this clearance so tha t  dissemination controls are handled properly. 

UserID--a character  string used to denote  a user of the system. To  use the 
MMS, a person must  present  a userID to the system, and the system must  
authent icate  tha t  the user is the person corresponding to tha t  userID. This  
procedure is called logging in. Since clearances are recorded on the basis of one 
per userID, each user should have a unique userID. 

User--a person who is authorized to use the MMS. 

Role--the job a user is performing,  such as downgrader, releaser, distributor,  
and so on. A user is always associated with at  least one role at  any instant ,  and 
the user can change roles during a session. To act in a given role, the user must  
be authorized for it. Some roles may be assumed by only one user at  a t ime {e.g., 
distributor).  With  each role comes the ability to perform certain operations.  

Object--a single-level unit  of information.  An object is the smallest uni t  of 
information in the system tha t  has a classification. An object thus contains no 
other  objects; it is not  multilevel. There  are many  kinds of objects; an example 
is the date- t ime-group of a message. 

Container--A multilevel informat ion structure.  A conta iner  has a classification 
and may contain objects (each with its own classification) and /o r  o ther  con- 
tainers. In most  MMS family members,  message files and messages are con- 
tainers. Some fields of a message (such as the Text field) may  be containers  as 
well. The  dist inction between an object and a container  is based on type, not  
current  contents:  within a family member,  if an ent i ty  of type message file is a 
container,  then  all message files in tha t  family member  are containers,  even if 
some of them are empty or contain only objects and /o r  containers  classified at  
the same level as the message file itself. Devices such as disks, printers,  tape 
drives, network interfaces, and users'  terminals  will be containers,  ra ther  than  
objects, in most  MMS members.  

Entity--either a container  or an object. 

Container Clearance Required (CCR)--an at t r ibute  of some containers.  For  
some containers,  it is impor tan t  to require a minimum clearance, so tha t  if a user 
does not  have at  least this clearance, he cannot  view any of the entit ies within 
the container.  Such containers  are marked with the at t r ibute  Conta iner  Clearance 
Required (CCR). For example, a user with only a C O N F I D E N T I A L  clearance 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



A Security Model for Military Message Systems • 207 

could be prohibited from viewing just the CONFIDENTIAL paragraphs of a 
message classified TOP SECRET by marking the message (which is a container) 
"CCR." On the other hand, given a message file containing both TOP SECRET 
and CONFIDENTIAL messages, it may be acceptable to allow the user in 
question to view the CONFIDENTIAL ones, even though the container (message 
file) as a whole is classified TOP SECRET. In this case, the file would not be 
marked "CCR." 

/D--identifier. An ID names an entity without referring to other entities. For 
example, the name of a message file is an ID for that file. Some, but not necessarily 
all, entities can be named by identifiers. Entities may also be named by indirect 
references (see below). 

Direct reference--a reference to an entity is direct if it is the entity's ID. 

Indirect reference--a reference to an entity is indirect if it is a sequence of two 
or more entity names (of which only the first may be an ID). An example is "the 
current message's Text field's third paragraph." 

Operation--a function that  can be applied to an entity. It may simply allow 
that entity to be viewed (e.g., display a message), or it may modify the entity 
(update a message), or both (create a message). Some operations may involve 
more than one entity (copy a message from one message file to another). 

Access Set--a set of triples (userID or role, operation, operand index) that is 
associated with an entity. The operations that may be specified for a particular 
entity depend on the type of that entity. If a given operation requires more than 
one operand, the operand index specifies the position in which a reference to this 
entity may appear as an operand. For messages, operations include DISPLAY, 
UPDATE, DELETE, and so on. The existence of a particular triple in the access 
set implies that the user corresponding to the specified userID or role is authorized 
to invoke the specified operation on the entity with which the set is associated. 

Message--a particular type implemented by an MMS. In most MMS family 
members, a message will be a container, though messages may be objects in some 
receive-only systems. A message will include To, From, Date-Time-Group, Subject, 
Releaser, and Text fields, and additional fields as well. A draft message also 
includes a Drafter field. 

4.2 User's View of MMS Operation 

We present the following as a model of the use of a secure MMS. Terms defined 
above are printed in uppercase. 

People can gain access to the system only by logging in. To log in, a person 
presents a USERID and the system performs authentication, using passwords, 
fingerprint recognition, or any appropriate technique. Following a successful 
authentication, the USER invokes OPERATIONS to perform the functions of 
the message system. The OPERATIONS a USER may invoke depend on his 
USERID and the ROLES for which he is authorized; by applying OPERATIONS, 
the USER may view or modify OBJECTS or CONTAINERS. The system 
enforces the security assertions listed below (that is, it prevents the user from 
performing OPERATIONS that  would contradict these assertions). 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



208 • C.E. Landwehr, C. L. Heitmeyer, and J. McLean 

4.3 Security Assumptions 

It will always be possible for a valid user to compromise information to which he 
has legitimate access. To make the dependence of system security on user 
behavior explicit, we list the following assumptions. These assumptions are really 
security assertions that can only be enforced by the users of the system. 

A1. The System Security Officer (SSO) assigns clearances, device classifications, 
and role sets properly. 

A2. The user enters the correct classification when composing, editing, or re- 
classifying information. 

A3. Within a classification, the user addresses messages and defines access sets 
for entities he creates so that  only users with a valid need-to-know can view 
the information. 

A4. The user properly controls information extracted from containers marked 
CCR {i.e., exercises discretion in moving that  information to entities that 
may not be marked CCR). 

The basis for these assumptions is that  when there is no other source of 
information about the classification of an entity or the clearance of a person, the 
user is assumed to provide information that  is correct. 

4.4 Security Assertions 

The following statements hold for a multilevel secure MMS: 

Authorization 

Classification hierarchy 2. 

Changes to objects 

Viewing 

5. A Access to CCR entities 

ACM T r a n s a c t i o n s  o n  Computer Systems, Vol. 2, 

1. A user can invoke an operation on an entity 
only if the user's userID or current role ap- 
pears in the entity's access set along with 
that  operation and with an index value cor- 
responding to the operand position in which 
the entity is referred to in the requested op- 
eration. 

The classification of any container is always at 
least as high as the maximum of the classifi- 
cations of the entities it contains. 

3. Information removed from an object inherits 
the classification of that  object. Information 
inserted into an object must not have a clas- 
sification higher than the classification of 
that  object. 

4. A user can view (on some output medium) only 
an entity with a classification less than or 
equal to the user's clearance and the classi- 
fication of the output medium. (This asser- 
tion applies to entities referred to either di- 
rectly or indirectly). 
user can have access to an indirectly refer- 
enced entity within a container marked "Con- 
tainer Clearance Required" only if the user's 

No. 3, August 1984. 



A Security Model for Military Message Systems • 209 

Translating indirect 
references 

Labeling requirement 

Setting clearances, role 
sets, device levels 

Downgrading 

Releasing 

clearance is greater than or equal to the clas- 
sification of that container. 

6. A user can obtain the ID for an entity that he 
has referred to indirectly only if he is author- 
ized to view that entity via that reference. 

7. Any entity viewed by a user must be labeled 
with its classification 

8. Only a user with the role of System Security 
Officer can set the clearance and role set 
recorded for a user or the classification as- 
signed to a device. A user's current role set 
can be altered only by that user or by a user 
with the role of System Security Officer. 

9. No classification marking can be downgraded 
except by a user with the role of downgrader 
who has invoked a downgrade operation. 

10. No draft message can be released except by a 
user with the role of releaser. The userID of 
the releaser must be recorded in the "re- 
leaser" field of the draft message. 

4.5 Discussion 

The purpose of this subsection is to clarify the effects of the model in particular 
cases. The paragraphs below are not part of the model; the previous subsections 
define the model completely. Here we seek only to show how the model applies 
in specific circumstances. 

(1) What prevents a user from copying a classified entity to an unclassified 
entity? 

The classification of the entity being copied accompanies the data. Moving 
explicitly classified data to an unclassified container is a violation of assertion 2 
(classification hierarchy) and 9 (downgrading), unless the user requesting the 
operation is the downgrader and is performing a downgrade operation, since the 
classification of the data in question is effectively changed by the operation. 
Manipulations that affect only objects are covered by assertion 3 (changes to 
objects). 

(2) What about copying a part of an object into another object? 
A part of an object inherits the classification of the whole object (assertion 3, 

changes to objects). Thus moving part of an object into another object is 
disallowed by assertions 2 (classification hierarchy) and 3 unless classification of 
the former object is less than or equal to that of the latter. Note that this 
constraint does not affect the user's ability to remove an UNCLASSIFIED 
paragraph (an object) from a CONFIDENTIAL document (a container) and use 
it in an UNCLASSIFIED document (another container). 

(3) Does a user have a "login level"? 
Login levels are not explicitly part of the model, but the effect of a login level 

can be obtained through the classification of the user's terminal. The classifica- 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



210 • C .E .  Landwehr, C. L. Heitmeyer, and J. McLean 

tion of the terminal is an upper bound on the classification of information that  
can be displayed on it (assertion 4, viewing). If the user wishes to restrict further 
the level of the information that  appears on the terminal, he may invoke an 
operation to reduce the classification of the terminal. The right to determine the 
classification of shared devices (disks, printers, etc.) will generally belong to the 
SSO. Note that restricting the level of the information that  can appear on the 
user's terminal does not necessarily restrict the level of information that  programs 
he invokes may have access to. 

(4) Processes do not appear in the model but surely will be present in the 
implementation. How will their activities be constrained? 

Operations, rather than processes or programs, are in the model because they 
correspond more closely to the user's view of the system. To the user, the system 
offers functions that may be invoked by typing strings of characters, pushing 
function keys, etc. Each function can be understood by the user as an operation. 
In the implementation, processes are constrained to invoke only operations that  
preserve the truth of the assertions. 

(5) Which entities in a particular message system will be containers and which 
will be objects? 

This decision is part of the next more detailed level of the stated model. Some 
likely choices are that messages and message files will be containers and that  the 
date-time group will be an object. It is not necessary that  all message systems in 
the family make the same choices. If two message systems that make different 
choices communicate, some method of mapping between those entities that  are 
objects in one system and containers in the other must be defined. 

(6) How are entities created? 
For each type of entity that  users can create, there will be an operation that, 

when invoked, creates a new instance of that  type. As with all other operations, 
only users who are authorized for it can invoke it. Thus, it is not necessarily the 
case that any particular user will be able to create any particular kind of entity; 
he must be authorized to do so. In particular, only users authorized for certain 
roles may be allowed to create certain kinds of entities. 

(7) How does a user refer to an object or a container? 
Some entities have identifers (IDs) that allow them to be named directly. A 

given entity may have zero, one, or more IDs. An entity may also be referred to 
indirectly by a qualified name (see the example under the definition of indirect 
reference). A user (or a program he invokes) can refer to an entity using any 
valid ID or qualified name. The former is called a direct reference and the latter 
an indirect reference. 

(8) What policy governs access to an entity in a container? Is the classification 
of the container or of the contents tested and with what is it compared? 

The answer to this question depends on the type of access (the operation 
invoked) and whether the reference is direct or indirect. If the entity is referred 
to directly for viewing, assertion 4 (viewing) gives the appropriate restriction. If 
the reference is indirect, there are two cases depending on whether or not the 
entity is within a container marked CCR. If it is, both assertions 4 and 5 (access 
to CCR entities) have an effect; otherwise, only assertion 4 is relevant. Note that  
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



A Security Model for Military Message Systems • 211 

a user may be permitted to view a particular entity in a CCR container if he 
refers to it directly, but be denied access if he refers to it indirectly. This provides 
a means for dealing with the aggregation problem without requiring duplicate 
copies of protected information: a collection of CONFIDENTIAL aggregation- 
sensitive objects might be stored in a container marked SECRET-CCR. A user 
with a CONFIDENTIAL clearance who had been given the ID of an individual 
object could refer to it directly, but would be unable to view the same item via 
an indirect reference that identified it as a member of the SECRET-CCR 
container. Assertion 1 (authorization) always requires that the user (or his role) 
be in the access set for the entity-operation pair specified. 

(9) Is there anything in the system that  is not (or is not part of or a name for) 
an entity or a user? 

From the user's point of view, no. There may be structures in the implemen- 
tation that the user is unaware of and would be difficult to assign a legitimate 
classification to (such as internal operating system queues, perhaps). Anything 
the user can create, display, or modify, however, must be (or be part of or a name 
for) an entity or a user. 

(10) What are the relationships among a user, an operation he invokes, and 
programs that the operation may invoke on his behalf?. For example, what 
privileges do the programs inherit, how is it determined whether a given invoca- 
tion is allowed under the security policy? 

A user has a clearance recorded in the system. Whan a user invokes an 
operation on an entity, his clearance and role, the appropriate device classifica- 
tions, and the classification, CCR mark, and access set for that entity determine 
whether the operation is permitted. The user's ID or current role must be paired 
with the specified operation in the access set of the entity in question (assertion 
1, authorization). If the operation allows information to be viewed via a given 
device, then the user's clearance and the classification of the output device must 
equal or exceed the classification of the information (assertion 4, viewing). 
Similarly, other security assertions must not be violated by the programs invoked 
as part of the requested operation. 

(11) There are no integrity levels or controls defined in the model. What 
prevents accidental/malicious modification of sensitive data? 

The reasons for omitting integrity levels have been discussed separately [14]. 
Modifications of clearances, classifications, and role sets are covered in the given 
set of assertions. To alter data, a user must invoke an operation; assertion 1 
(authorization) requires that the user be authorized to invoke that  operation. In 
the future, specific cases may be treated in additional assertions similar to 
assertion 10 (releasing). 

5. FORMALIZING THE MMS SECURITY MODEL 

To provide a firm foundation for proofs about the security properties of a system 
specification or implementation, a formal statement of its security model is 
needed. This section presents a formal model that corresponds to the informal 
MMS security model. It serves three purposes: (1) it is an example of how an 
informal model of a system's security requirements can be made formal; (2) being 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



212 • C.E. Landwehr, C. L. Heitmeyer, and J. McLean 

abstract, it can be interpreted by others for different but related applications; 
and (3) it is a basis for proofs about particular message system specifications and 
implementations. 

The MMS security model comprises fifteen definitions, a one-paragraph de- 
scription of MMS operation, four assumptions about user behavior, and ten 
assertions that  hold for the MMS. We focus on formalizing the ten assertions 
only, although in doing so, some notation is required to define formal entities 
that correspond to those discussed informally in the fifteen definitions. Below, 
the assertions are explicated formally in definition (2) concerning system states 
and definitions (5) through (11) concerning the system transform. Although the 
correctness of the explication cannot be proven, we discuss the correspondence 
between the formalism and the informal model briefly following the explication. 

Each MMS family member can be modeled as an automaton with inputs, an 
internal state, and outputs. The inputs correspond to the commands users give 
to the system. Because this is a security model, we are principally concerned with 
modeling the categories of inputs that  affect system security. The internal state 
of the automaton corresponds to the information currently stored in the message 
system--messages, message files, classifications, access sets, and so on. Output 
from the automaton consists of command responses--the things that  users view 
or obtain in response to particular requests. These may include entities, classi- 
fication labels, IDs, and so on. We model output as a set of distinguished entities; 
although output is treated as part of the internal state, it represents that  part 
that is directly visible to users. Some commands cause a state change that  affects 
the output set, others may cause a change of state without changing the output 
set, and still others {particularly commands that  do not satisfy the security 
assertions) cause no state change at all. A history of the system is a particular 
sequence of inputs and states. 

5.1 Formal Model 

We assume the existence of a set of possible users and a set of possible entities. 
Given these sets we define system state and the notion of a secure state. Next, we 
define system and history and introduce constraints on the transform that  moves 
a system from one state to another. A system whose transform meets all these 
constraints is said to be transform secure. Finally, the notions of secure history 
and secure system are defined. 

The structure of the formal model is intended to simplify its application to 
defining preconditions and postconditions for system operations. To make ex- 
plicit the entities that a given operation may change, we define the concept of 
potential modification based, in part, on the work of Popek and Farber [20]. 
Potential modification is similar to strong dependency, developed by Cohen [6]. 

5.1.1 System State. In this section we define what it is to be a system state 
and what it is for a system state to be secure. We assume the existence of the 
following sets. 

OP is a set of operations. 

L is a set of security levels. _ is a partial order on L such that  (L, _) is a 
lattice. 

ACM Transactions on Computer Systems, Yol. 2, No. 3, August 1984. 



A Security Model for Military Message Systems • 213 

UI 

RL 

US 

RF 

VS 

T Y  

ES 

is a set of userID's .  

is a set of  user roles. 

is a set of  users. For  all u E US, CU(u) E L is the  clearance of u, R(u) CC_ 
RL is the set of  authorized roles for u, and  RO(u) CC. RL is the current  
role set for user u. 

is a set  of references.  Th is  set is par t i t ioned  into a set, DR, of direct 
references and  a set, IR, of indirect  references.  Although the exact  na ture  
of  these references is un impor tan t ,  we assume tha t  the direct references 
can be ordered by the integers. In  this  model we t rea t  each direct reference 
as a unary  sequence consist ing of a single integer, for example,  (17). 
Each  indirect  reference is t rea ted  as a finite sequence of two or more 
integers, for example,  (nl  . . . . .  nm), where (n l )  is a direct  reference. 

is a set of  str ings (bit or character) .  These  str ings serve pr imar i ly  as 
ent i ty  values (e.g., file or message contents) .  

is a set of  message sys tem data  types  t ha t  includes "DM" for draf t  
messages and "RM" for released messages.  

is a set of entities. For  "all e E ES CE(e) E L is the  classification of e. 
AS(e) C_ (UI U RL) x OP x N is a set of tr iples t ha t  compose the access 
set  of e. (u, op, k) E AS(e) iff u is a user ID or user role author ized to 
per form operat ion op with a reference to e i~s op's kth parameter .  T (e) E 
T Y  is the type of ent i ty  e. V(e) ~ VS is the  value of ent i ty  e. I f  T(e) = 
DM or T(e) = RM, then  V(e) includes a releaser field RE(e), which if 
nonempty ,  contains  a userID. ES contains  as a subset  the set  of  enti t ies 
t ha t  are containers .  For  any  ent i ty  e in this  set H(e) = ( e l , . . . ,  e,)  where 
ent i ty  ei is the i th ent i ty  conta ined  in e. CCR (e) is true iff e is marked  
CCR, else [alse. I f  T(el) = T(e2) then  e~ and  e2 are bo th  conta iners  or 
both  objects. The  set  0 of  output  devices is a subset  of  the set  of  
con ta iners?  E lements  o E 0 serve as the domain  of two fur ther  functions.  
D(o) is a set  of  ordered pairs  {(x~, y~), (x2, Y2) . . . .  , (x,, y,)} where each yi 
is displayed on o. Each  x~ is e i ther  a user or an enti ty,  and  the  correspond-  
ing Yi is e i ther  a reference, a userID,  or the  result  of  applying one of the 
above funct ions to xi. ~ We require t ha t  (x, V(x)) E D(o) ~ x E H(o). 6 
CD(o) gives the  m a x i m u m  classification of informat ion  t ha t  may  be 
displayed on o. Th is  allows CE(o) to be used as the cur rent  upper  l imit  of  
the classification of informat ion  to be displayed by the output  device, so 
t ha t  users can restr ict  the  classification of output  to be less t han  the 
m a x i m u m  level permit ted .  

4 In implementat ions,  some kinds of  output  "disappear" from the  system state (e.g., information sent  
to a pr inter  or a te lecommunicat ions port} while others persist  (e.g., information displayed on the 
screen of a terminal,  which a user may later refer to and modify). In the  formalization, we do not  
distinguish between these types; both  are intended to be covered by O. 
5 Both the  i tem and what  is displayed must  be specified so that ,  for example, cases in which two 
entit ies have identical values but  different security levels can be distinguished. 
e We extend the set theoretic not ions of  membership  and intersection to apply to tuples in the  obvious 
sense. 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



214 • C.E. Landwehr, C. L. Heitmeyer, and J. McLean 

A state maps a subset of userIDs and references (intuitively, those tha t  exist 
in the state in question) to elements  of US and ES tha t  represent  their  corre- 
sponding properties.  A state also maps a subset of userIDs tha t  "exist" into 
references tha t  correspond to output  devices (intuitively, these users are logged 
on to the specified devices). To  this end we define three mappings. An id function, 
U, is a one-to-one mapping from a (possibly improper)  subset of UI into US. A 
reference function, E, is a mapping from a (possibly improper)  subset of RF into 
ES such tha t  for all n _  2 E ( ( i l , . . . ,  i , ))  = e i f f E ( ( i l ,  . . . ,  in-l)) = e* where e* 
is a container  such tha t  e is the inth element  of H(e*). For any reference r, if  
E(r) = e, we say tha t  r is a reference to e (relative to E) .  A login function, LO, is 
a one-to-one mapping from a (possibly improper)  subset of UI into RF. 7 

Given a reference function, E, each indirect  reference of the form (no, . . . ,  n~) 
to an ent i ty  em corresponds to a pa th  of enti t ies (e0, . . . ,  em) such tha t  each ei E 
rng(E), eo is denoted by the direct reference (no), and for all positive integers i 
<_ m, ei is the nith ent i ty  in conta iner  ei-~. Such an indirect  reference is said to 
be based on each ent i ty  ej where 0 _ j < m. 

Definition 1. A system state, s, is an ordered triple s (U, E,  LO) where U is an 
id function, E is a reference function, and LO is a login funct ion such tha t  
dom(LO) C dom(U) and rng(LO) C dom(E n (RF x 0)) .  We also require tha t  if 
0 E rng(E) n 0 and (x, y) E D(o),  then  x ~ rng(E) U rng(U) to assure tha t  only 
informat ion about  users and entit ies tha t  "exist" in the current  state can actually 
be displayed, and tha t  for any reference r, (x, r) E D(o) --* E(r) = x. Finally, we 
require tha t  E(LO(ul)) = E(LO(u2)) --~ ul = u2 to prevent  two users from being 
logged in simultaneously on the same terminal .  

Given a system state s = (U, E, LO), we abbreviate E(r) by r,, U(u) by us, and 
E(LO(u)) by ~s. 

Definition 2. A state s is secure if  Vx, y ~ rng(E), Yo E 0 n rng(E), V w E 
dom(LO), and Vu E rng(U): 

x E H(y) --~ CE(x) <_ CE(y), 
x E H(&~) ---* CU(ws) >- CE(x), 
(x, V(x)) E D(o) ---* (x, CE(x)) ~ D(o), 
RO(u) C_ R(u), and 
CD(o) >_ CE(o). 

5.1.2 Secure System. In this section we define what  a system is and what  it is 
for a system to be secure. 

Definition 3. A system Y~ is a 4-tuple (/, S, So, T )  where 

I is the set of well-formed system requests, where each request  i E I is of the 

7 The condition that  LO is a function reflects an assumpt ion that  a user cannot  be on two terminals 
at the same time. We also assume that  a user 's  output  is directed to the terminal  he is on. These 
assumptions are merely for ease of exposition and are not  an essential par t  of the model. One way to 
appropriately restrict output  that  is not  directed to the user 's  terminal  would be to consider a user 
logged in on a device when he directs output  to it. 

s State is defined as a tuple, rather  than  as a set of functions, because two states whose elements have 
the same values are in fact identical, while two entities for which the defined functions re turn the 
same values may in fact be different (e.g., two copies of the same citation). 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



A Security Model for Military Message Systems • 215 

form ( op, xl, x2 . . . . .  x ,)  where each xj E RF U UI U VS and op E OP; 
S is the set of  possible sys tem states; 
So designates a special s ta te  called the  initial state; and 
T is the system transform, t ha t  is, a funct ion f rom UI × I x S into S. 

Definition 4. A history, II,  of  a sys tem is a funct ion f rom the set  of  nonnegat ive  
integers N to UI × I x S such tha t  (1) the th i rd  e lement  of  II(0) is So, and  (2) 
for all n E N, if H(n)  = (u, i, s) and  I I (n  + 1) = (u*, i*, s*), t hen  T(u,  i, s) = s*. 

Before defining what  it means  for an opera t ion to potent ia l ly  modify  an enti ty,  
we notice tha t  a reference funct ion E,  and  afortiori a s tate  s, induces a set of  
functions defined on references t ha t  are counte rpar t s  to the set of  funct ions 
introduced above tha t  are defined on entities. For  example,  there  is a function, 
call it Vs, such t ha t  Vs(r) = V(r,). Similarly,  there  is a counte rpar t  predicate,  call 
it H~, such tha t  H,  (r, r 1, . . . ,  r n) iff H(r,) = (r] . . . . .  r~). Each  counte rpar t  is 
the user-visible version of the  corresponding ent i ty  function. We call these 
referential counterparts and use t hem to define what  it means  for two s ta tes  to 
be equivalent  except  for a set of  references.  9 

Sta te  s = (U, E, LO) and s* = (U*, E*,  LO*) are equivalent except for some set 
of  references p iff (1) U = U*, (2) LO = LO*, (3) dom(E) = dom(E*), (4) for any  
ent i ty  function F except  V, F, = F, . ,  and  (5) for any  reference r E dom(E) ~ p, 
V,(r). 
We now define potent ia l  modif icat ion as follows: 

u, i, spotentially modify r i f f 3  sl, s*: sl is equivalent  to s except  possibly for some 
set of references and  T(u, i, s~) = s* and for some ent i ty  funct ion F, 
F(r , , )  ~ F ( r ~ ) .  1° 
Call y a contributing factor in such a case iff y = r or 3 s~ as above and  s2, s~': s~ 
and s2 are equivalent  except  for {y} and  T(u, i, s2) =s* and F(r,.~)~F(r~.~). 

T h a t  is, u, i, s potent ia l ly  modifies r if there  is some (second) s ta te  t ha t  may  
differ f rom s in the values of  some entities, and  T maps  u, i, and  this s ta te  into 
a th i rd  s tate  in which some ent i ty  funct ion F (value, con ta inment ,  access set, 
etc.) on r differs f rom the second state. The  contr ibut ing factors  are r and  those 
enti t ies whose values affect  the final F(r).  

For  each referential  coun te rpar t  and  each funct ion defined on users, we posi t  
a unique operat ion t ha t  changes an exist ing ent i ty  or user with respect  to t ha t  
function. For  example,  an opera t ion set__AS(r, new_access_set) is the only oper- 
at ion (besides delete(r) and possibly, create(r)) t ha t  affects r ' s  access set, and  it 
has no other  user~visible effect. Fur ther ,  if the t rans i t ion  is, for example,  f rom 
state s to s tate  s*, AS, .  (r) is new_access_set if  new_access_set is a charac ter  s tr ing 
and V,(new_access_set) if new_access_set is an ent i ty  reference. Changes  to the 
domain of E or U (creation or deletion of enti t ies or users) are also assumed to 
occur only by explicit request. T h e  formal  release operat ion defined below is the 

9 We could have developed the entire formal model in terms of referential counterparts, but preferred 
the simplicity of functions to working with the predicate H,. 
lo This covers cases of creation (and deletion) since, F(r,~) will be undefined and F(r,~.) will be defined 
(although possibly empty). 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



216 • C .E .  Landwehr, C. L. Heitmeyer, and J. McLean 

single exception to this assumption; it changes the type of r and, potentially, the 
releaser field of r's value as well. 

The exact nature of these operations is unimportant since these assumptions 
are included solely for ease of exposition. Their purpose is not to rule out 
implementation commands that  affect different parts of entities, but to eliminate 
the problem of unspecified side effects in the formal model (e.g., permission to 
view a message marked CCR is not permission to clear the CCR mark). Imple- 
mentation commands that  can alter more than a single part of a single entity 
correspond to a sequence of formal operations. For a given implementation, this 
correspondence is determined by the semantics of the implementation command 
language. Once this correspondence has been determined, so that  the security- 
relevant effects of each user command are clear, I can be replaced by the set of 
implementation commands with access sets also changed accordingly. Neverthe- 
less, prudence dictates that  modifications (e.g., changing a user's clearance) that  
can be made only by the security officer, be restricted so that  there is only a single 
command that performs them in any implementation. 

The following constraints on the system transform lead to the definition of a 
secure history and a secure system. Where quantification is not explicit below, 
universal quantification is assumed. 

Definition 5. A transform T is access secure iff Vu, i, s, s*: T(u,  i, s )=s* ,  
[ ( o p E i n O P  and rk E i n RF)  --, ((u, op, k ) E A S ( E ( r k ) )  or 3 I E R O ( u , ) ,  and (/, 
op, k ) E A S ( E ( r h ) ) ) ]  or s=s* .  11 

Definition 6. A transform T is copy secure iff Vu, i, s, s*: T(u,  i, s) =s*, x is 
potentially modified with y as a contributing factor ~ CE(x,)  >_ CE(y , ) .  

Definition 7. A transform T is CCR secure iff Vu, i, s, s*: T(u,  i, s )=s* ,  
r E i n I R  is based on y and CCR(y)  and z is potentially modified with r as a 
contributing factor --~ CU(u,)  >_ CE(y ) .  

Definition 8. A transform T is translation secure iff V u, i, s, s*: T(u,  i, s) =s*, 
x E DR and (x,., x) E D (Ss*) --* 3 r E i n RF, r, = x, and (r is based on z and CCR (z) 
--* CU(u,) _ CE(z)). 12 

Definition 9. A transform T is set secure iff Vu, i, s, s*: T(u,  i, s )=s* ,  (a) 
3 o E dom (E n (RF × 0 )), CD (o,) ~ CD (o,.) or 3 x E dom (U),  C U(x, ) ~ C U(x,.  ) or 
R(x,) # R(x,.) --* security_officer E RO(us); and (b) x E dom(U)  and 
RO(x,)  ~ RO(x,.  ) ---, u, = x, or security_officerE RO(u,) .  

Definition 10. A transform T is downgrade secure iff Y u, i, s, s*: T(u,  i, s ) =  s*, 
x E d o m ( E  ~ (RF x {5,})) and CE(x,)  > CE(x, . )  ---, downgraderERO(u, ) .  

11 For simplicity we disregard error  messages  in the  formalism. In an implementa t ion we assume tha t  
if an unauthorized operation is a t tempted,  an appropriate error  message will be produced in the  next  
state. 
12 Strictly speaking, references can be wri t ten to an ent i ty  without  violating t ransla t ion secure only 
if they are not  displayed. A practical implementa t ion tha t  satisfies the spirit  of  this policy is to permit  
the writing of  references to an enti ty but  only on the  condit ion tha t  the  reference could have been 
displayed without  violating t ranslat ion secure. 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



A Security Model for Military Message Systems • 217 

Definition 11. A transform T is release secure iff Vu, i, s, s*: T(u, i, s)=s*, 
(T(x~)=RM ~ T (x , . )=RM and RE(x~.)=RE(xs)) and ( T ( x , ) ~ R M  and 
T(x , . )=RM --~ RE(x, . )=u,  3r: r,=x,,  i is the operation (release, r), re- 
leaserE RO(u,) and T(x,) = DM). 

Definition 12. A transform is transform secure iff it is access secure, copy 
secure, CCR secure, translation secure, set secure, downgrade secure, and release 
secure. 

Definition 13. A history is secure if all its states are state secure and its 
transform is transform secure. 

Definition 14. A system is secure if each of its histories is secure. 

5.2 Discussion 

Perhaps the most basic decision we made in formalizing the MMS model concerns 
our general conception of a computer system, in particular the relation between 
a system state and a system. We considered a view where a system state consists 
of entities and their relations, and where a system adds to this users and user 
operations on entities. Hence, all restrictions on user properties (in particular, 
the restriction for all u, RO(u)~R(u) )  are included in the definition of a secure 
system. We chose instead to view the distinction between system states and 
systems in terms of static as opposed to dynamic properties. Static properties are 
those that hold for all secure states and, hence, can be checked by examining a 
state in isolation; dynamic properties are those that  hold for the relation between 
secure states and, hence, can be checked only by comparing two or more states. 
In the view we adopted, all static security properties are included in the definition 
of a secure state. 

To a large extent the choice in conceptualizations is a matter of taste. Bell and 
LaPadula [4] use the latter, while Feiertag et al. [8] lean to the former. By 
minimizing the notion of a secure state, the former view makes the Basic Security 
Theorem shorter. The deciding factor in our adopting the latter view is that  it 
makes it impossible for a system to undergo a security-relevant change without 
undergoing a change in state. 

Principal difficulties we encountered in formalizing the MMS security model 
were in representing "copy" and "view," system output, and the notion of an 
authorized operation. Assertion 3 (changes to objects) in the informal model 
requires formal semantics to reflect the movement of information between 
entities, while assertion 4 (viewing) requires formal semantics to reflect making 
an entity visible to a user. Assertion 5 (accessing CCR entities) now addresses 
both copying and viewing. The semantics for "copy," embodied in the definitions 
of "potential modification" and "contributing factor," are based on a broad 
interpretation of "copy." Information is considered to be copied, not only if it is 
directly moved from one entity to another, but also if it contributes to the 
potential modification of some other entity. For example, if an operation scans 
message file A and copies messages selected by a filter F to message file B, both 
A and F contribute to the potential modification of B (and are therefore subject 
to the constraints imposed by copy secure and CCR secure), even if both A and F 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



218 • C.E. Landwehr, C. L. Heitmeyer, and J. McLean 

are empty. The semantics for "view" are straightforward: a thing is viewed if an 
operation makes it a member of an output container. In light of these consider- 
ations, we have used "access" instead of "view" in assertion 5. 

In the formalization, system output is interpreted as a set of containers; other 
entities, parts of entities, references, and classifications that  are made visible to 
a user are interpreted as being copied to his output container. We assume that  
in any implementation the classifications displayed appear close to the entities 
(or parts) they correspond to, but we have not formalized this assumption. 
References are explicitly included as a part of output because the same operation 
applied to the same entities can yield different results, depending on how the 
entities are referenced. This leads to the constraint (translation secure) on 
operations that produce as output direct references that  are translations of 
indirect ones. To enforce this constraint, the system must recognize references 
as a particular kind of output. 

Formalizing the concept of an authorized operation is difficult because the 
semantics of authorized operations are unspecified. Our definition of access secure 
requires that, if an operation changes the system state (beyond producing an 
error message as output), then for each entity in the set of operands the user or 
role, operation, and operand index must appear in the access set. Unauthorized 
operations must not alter the system state except to report that  they are 
erroneous. 

5.3 Correspondence to the Informal Model 

Assertions (2), (4), and (7) of the informal model, concerning classification 
hierarchy, viewing, and labeling, are incorporated in the formal definition of 
secure state. They correspond respectively to the first three conditions a secure 
state must satisfy; the last two conditions require that  each user's current role 
set must be a subset of his authorized role set and that  the current security level 
of each output device must be dominated by its maximum allowed level. These 
last two conditions are implicit in the informal model. 

The remaining assertions of the informal model have been translated into 
constraints on the system transform. Assertion (1) {authorization) corresponds 
directly to access secure, assertion (6) to translation secure, and assertions (8)- 
(10) (setting, downgrading, and releasing) correspond respectively to set secure, 
downgrade secure, and release secure. Se t  secure restricts the permission to set 
device classifications and user role sets to security officers and restricts permis- 
sion to set a user's current role to himself or a security officer. Downgrade secure 
contains an exception for ~, so that  a user is not prohibited from lowering the 
current level of his output device. The formal statement of release secure makes 
explicit the requirement that, once released, a message cannot have its type or 
releaser field altered. 

Assertions (3) and (5) correspond to copy secure and CCR secure. The definition 
of copy secure actually covers parts of both assertion 3 and assertion 4 because 
output devices are treated as containers. So, if entity x receives information from 
an object y, CE(x)  >_ C E ( y )  (assertion 3), and if an output container o receives 
information from entity x, CE(o) >_ CE(x)  (assertion 4). CCR secure corresponds 
to assertion 5, under the interpretation that  having access to an entity is 
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



A Security Model for Military Message Systems • 219 

significant only if that entity is a contributing factor in the potential modification 
of another entity. 

5.4 Storage Channels 

Because we have defined potential modification and contributing factor in terms 
of changes only to entities, the constraints imposed by copy secure and CCR 
secure do not apply to changes made to functions defined on users (clearance, 
role set, and current role). Thus, there is the potential for information to be 
transferred from a higher level to a lower one through these functions. However, 
changes to user clearances and role sets are controlled by set secure; the normal 
user can change only his current role set, and this provides a channel of very 
limited bandwidth. 

Among entities, one class of storage channel remains. Consider two entities 
with the same classification. The model permits an operation to modify an entity 
function of one entity based on the value of the other entity. Since entity 
functions other than value (i.e., containment (H), classification, access set, CCR 
mark, or type) have no classifications, there is nothing in the model to prohibit 
a user from viewing those functions, even if he is not cleared to see the entity's 
value. So information might flow from the value of one entity to the access set 
of another at the same security level and the change in access set could be 
observed by a user at a lower security level. 

Changes in H offer the greatest opportunity for exploitation, but all of the 
channels offered by entity functions could be closed by attributing the classifi- 
cation of the entity value to the other entity functions as well. In practice, the 
semantics of message system commands should restrict these channels suffi- 
ciently so that  this will be unnecessary. If designers should find the constraints 
imposed by the present definitions of potential modification and contributing 
factor too confining, these could be relaxed by restricting their coverage to a 
subset of the entity functions. The price of such a change would be the increased 
potential for storage channels using the excluded functions. The bandwidths of 
potential storage channels cannot be precisely estimated at the abstract level of 
the formal model, yet it is clear that the value function should never be excluded 
from the defintions. Of the other entity functions, H is the most problematic 
both because message system operations are more likely to alter H than the other 
entity functions and because a relatively large amount of information could be 
encoded in a single change to H. 

5.5 A Basic Security Theorem for the Formal MMS Security Model 

In formalizations where a secure system is a collection of secure states, some feel 
that a Basic Security Theorem is needed to show the restrictions on system 
transforms that ensure that a system starting in a secure state will not reach a 
state that is not secure [4]. Such theorems are of little practical significance, 
since their proofs do not depend on the particular definition of security provided 
by the model [18]. Further, in our approach such a theorem is not pressing since 
the concept of a secure system is defined largely in terms of a secure transform. 
Nevertheless, we do appeal to the notion of a secure state, and some readers may 
feel that some form of Basic Security Theorem is needed. Those readers should 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



220 ° C.E. Landwehr, C. L. Heitmeyer, and J. McLean 

find it trivial to prove the following analog of the Basic Security Theorem for 
our definition of a secure state. 

THEOREM. Every state of a system ~ is secure if So is secure and T meets the 
following conditions for all u, i, s, s*: T(u, i, s) = s* and for all x, y ~ RF, w E US: 

(1) xsqtH(ys) and xs .~H(ys . )  ---> CE(x,.)<_CE(y~.). 

(2) x ~ H ( y ~ )  and CE(x~.)~CE(y,°)  ---> xs.q~H(y~.). 

(3) x~qtH(Cv~) and x,.EH(tb~.) --, CU(w~.)>_CE(x,.). 

(4) x, E H ( ~ )  and CU(w~.)~CE(xs.)  --~ x~H(Cv~.). 

(5) (x~, V(x~))q~ t~ and (xs., V(x~.)) E Cv~. --~ (x~., CE(x~.))E t~s.. 

(6) (x~, V(x,))~Cvs and (x~., CE(x~.))~Cv~. ---, (x~., V(x~.))q~ff)s.. 

(7) R(w~)~R(w, . )  or RO(w,)#RO(w~.)  --* RO(ws.)CR(w~.).  

(S) CE{&~)~CE{~v~.) or CD(Cv~)#CD(Cv~.) ---> CD(Cvs.)>CE(Cv~.). 

Together, {1)-(8) are necessary and sufficient conditions for every state of a 
system to be secure in any system that does not contain states that are unreach- 
able from So. 

6. CONCLUSIONS 

We favor an approach to building secure systems that includes an application- 
based security model. An instance of such a model and its formalization have 
been presented. They are intended as examples for others who wish to use this 
approach. Important aspects of the model are summarized below: 

(1) Because it is framed in terms of operations and data objects that the user 
sees, the model captures the system's security requirements in a way that is 
understandable to users. 

(2) The model defines a hierarchy of entities and references; access to an 
entity can be controlled based on the path used to refer to it. 

(3) Because the model avoids specifying implementation strategies, software 
developers are free to choose the most effective implementation. 

(4) The model and its formalization provide a basis for certifiers to assess the 
security of the system as a whole. 

Simplicity and clarity in the model's statement have been primary goals. The 
model's statement does not, however, disguise the complexity that is inherent in 
the application. In this respect, we have striven for a model that is as simple as 
possible but stops short of distorting the user's view of the system. 

The work reported here demonstrates the feasibility of defining an application- 
based security model informally and subsequently formalizing it. The security 
model described has been used almost without change by another message system 
project [9], and has been adapted for use in document preparation and biblio- 
graphic systems [2]. 
ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



A Security Model for Military Message Systems • 221 

Judgments about the viability of our approach as a whole must await its 
application in building full-scale systems. This we are pursuing in the develop- 
ment of message system prototypes [11, 12]. 

ACKNOWLEDGMENTS 

Many individuals contributed to the work reported here. Discussions with David 
Parnas led to an initial version of the security model. Later revisions of the 
model were based on reviews by Jon Millen, Stan Wilson, Mark Cornwell, Rob 
Jacob, Jim Miller, Marv Schaefer, and others too numerous to mention. Parti- 
pants in the 1982 Air Force Summer Study on Multilevel Data Management 
Security also provided many helpful comments. For providing the funding that 
allows us to continue our work, we are grateful to H. O. Lubbes of the Naval 
Electronic Systems Command and to the Office of Naval Research. 

REFERENCES 

1. AMES, S.R., JR., AND OESTRE1CHER, D.R. Design of a message processing system for a 
multilevel secure environment. In Proceedings of the AFIPS 1978 National Computer Conference 
(June 5-8), Vol. 47. AFIPS Press, Reston, Va., 765-771. 

2. Air Force Studies Board. Multilevel Data Management Security. Commission on Engineering 
and Technical Systems, National Research Council, National Academy Press, Washington, D.C., 
1983. 

3. BELL, D.E. Secure computer systems: A refinement of the mathematical model. MTR-2547, 
Vol. III, MITRE Corp., Bedford, Mass., Apr. 1974, 30-31. Available as NTIS AD 780 528. 

4. BELL, D.E., AND LAPADULA, L.J. Secure computer system: Unified exposition and Multics 
interpretation. MTR-2997, MITRE Corp., Bedford, Mass., Mar 1976. Available as NTIS ADA 
023 588. 

5. BIBA, K.J. Integrity considerations for secure computer systems. ESD-TR-76-372, ESD/AFSC. 
Hanscom AFB, Bedford, MA, Apr. 1977 (available as MITRE MTR-3153, NTIS AD A039324). 

6. COHEN, E. Information transmission in computational systems. In Proceedings of the 6th ACM 
Symposium on Operating Systems Principles, West Lafayette, Ind. ACM SIGOPS Oper. Syst. 
Rev 11, 5, (Nov. 1977), 133-139. 

7. DENNING, D.E. A lattice model of secure information flow. Commun ACM 19, 5 (May 1976), 
236-243. 

8. FEIERTAG, R.J., LEVITT, K.N., AND ROBINSON, L. Proving multilevel security of a system 
design. In Proceedings of the 6th ACM Symposium on Operating Systems Principles, West 
Lafayette, Ind. ACM SIGOPS Oper. Syst. Rev. 11, 5 (Nov. 1977), 57-65. 

9. FORSDICK, H.C., AND THOMAS, R.H. The design of a Diamond--A distributed multimedia 
document system. BBN Rep. 5204, Bolt, Beranek, and Newman, Cambridge, Mass., Oct. 1982. 

10. HEITMEYER, C.L., AND WILSON, S.H. Military message systems: Current status and future 
directions. IEEE Trans. Cornmun., COM-28, 9, (Sept. 1980), 1645-1654. 

11. HEITMEYER, C.L., LANDWEHR, C.E., AND CORNWELL, M.R. The use of quick prototypes in 
the secure military message systems project. ACM SIGSOFT So#w. Eng. Notes 7, 5 (Dec. 1982), 
85-87. 

12. HEITMEYER, C.L., AND LANDWEHR, C.E. Designing secure message systems: The Military 
Message Systems (MMS) project. In Proceedings of the IFIP 6.5 Working Conference on 
Computer-Based Message Services (Nottingham, U.K., May 1984) Elsevier North-Holland, New 
York, pp. 245-255. 

13. LANDWEHR, C.E. Assertions for verification of multilevel secure military message systems. 
ACM SIGSOFT So#w. Eng. Notes 5, 3 (July 1980), 46-47. 

14. LANDWEHR, C.E. Formal models for computer security. ACM Comput. Surv. 13, 3 (Sept. 1981), 
247-278. 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 



222 • C.E. Landwehr, C. L. Heitmeyer, and J. McLean 

15. LANDWEHR, C.E. What security levels are for and why integrity levels are unnecessary. NRL 
Tech. Memo 7590-308:CL:uni, Naval Research Laboratory, Washington, D.C., Feb. 1982. 

16. LANDWEHR, C. E., AND HEITMEYER, C.L. Military message systems: Requirements and security 
model. NRL Memo. Rep. 4925, Naval Research Laboratory, Washington, D.C., Sept. 1982. 
Available as NTIS ADA 119 960. 

17. MCCAULEY, E.J., AND P.J. DRONGOWSKI. KSOS--The design o f  a secure operating system. 
In Proceedings of the AFIPS 1979 National Computer Conference (June 4-7), Vol. 48. AFIPS 
Press, Reston, Va., 345-353. 

18. MCLEAN, J. A comment on the basic security theorem of Bell and LaPadula. Inf. Proc. Lett., 
Elsevier North-Holland, New York, 1984, to be published. 

19. MOOERS, C.D. The HERMES guide. BBN Rep. 4995, Bolt, Beranek, and Newman, Cambridge, 
Mass., Aug. 1982. 

20. POPEK, G.J., AND FARBER, D.A. A model for verification of data security in operating systems. 
Commun. ACM 21, 9 (Sept. 1978), 737-749. 

21. ROTHENBERG, J. SIGMA message service: Reference manual, Version 2.3, Rep. ISI/TM-78- 
11.2, USC/Inform. Sci. Inst., Marina del Rey, Calif., June 1979. Available as NTIS ADA 072 840. 

22. STOTZ, R., TUGENDER, R., AND WILCZYNSKI, D. SIGMA--An interactive message service for 
the military message experiment. In Proceedings of the AFIPS 1979 National Computer Confer- 
ence, (June 4-7, 1979), Vol. 48. AFIPS Press, Reston, Va. pp. 855-861. 

23. WILSON, S.H., GOODWIN, N.C., BERSOFF, E.H., AND THOMAS, N.M., III. Military message 
experiment--Vol. I executive summary. NRL Rep. 4454, Naval Research Laboratory, Washing- 
ton, D.C., Mar. 1982. Available as NTIS ADA 112 789. 

24. WOODWARD, J. P.L. Applications for multilevel secure operating systems. In Proceedings of the 
AFIPS 1979 National Computer Conference (June 4-7), Vol. 48. AFIPS Press, Reston, Va. 1979, 
pp. 319-328. 

Received September 1983; revised March 1984; accepted April 1984 

ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984. 


