
ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 11 no 5 Oct 1988 Page 83

N R L I n v i t a t i o n a l W o r k s h o p o n T e s t i n g a n d P r o v i n g :
T w o A p p r o a c h e s t o A s s u r a n c e

Georgetown University
Washington, D. C.

July 9-11, 1986

Organizing Committee

Carl E. Landwehr, NRL John McLean NRL
Susan L. Gerhar t , MCC Donald I. Good, U. Texas

Nancy Leveson, U.C. Irvine

Overview

The Naval Research Labora tory sponsored this workshop to invigorate
research in both program verification and program test ing through cross-
ferti l ization, to document the s ta te of the art and practice in both areas, and to
identify current assurance requirements and techniques for meeting them.
Approximate ly 50 invited researchers and pract i t ioners par t ic ipa ted over a 3-
day period. The workshop was held in conjunction with the COMPASS 86
conference, and the initial and final days of the workshop were open to COM-
PASS at tendees.

Tutorials character izing the current s ta te of test ing and proving techniques
and identifying indust ry and government assurance requirements occupied the
first day of the workshop. These provided a common base for five discussion
groups held during the second day. The discussion groups addressed (1) the role
of specifications in test ing and proving, (2) hybrid approaches of test ing and
proving, (3) levels of assurance, (4) interact ions between tes t ing/proving and
software engineering, and (5) cost effectiveness. The leader of each of these
groups summarized the discussions and conclusions on the final morning. Har-
lan Mills of IBM then provided a critique of these results. Amrit Goel of Syra-
cuse provided an impromptu closing ta lk on al ternat ive s ta t is t ica l models for
software test ing

The accompanying summaries were wri t ten by the discussion group leaders
following the workshop as a means of documenting our results and circulating
them to a wider audience. Although the leaders have tried to record fai thful ly
the results of the discussions, these summaries (and this preface) have not been
reviewed or approved by the other par t ic ipants of the groups. In addition, Dr.
Mills has provided a note on his thoughts about the workshop topics.

Comments

An interest ing fact t ha t cannot be gleaned from examining the group sum-
maries is the popular i ty of each group as determined by the number of partici-
pants requesting to be in t ha t group. For example, we had originally planned
for a sixth group on domains of applicabili ty, but could find no takers , and the
group on cost effectiveness was not popular among those par t ic ipants who

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 5 Oct Ig~8 Page: 84

expressed a group preference. Perhaps the two phenomena are related since a
major factor in determining whether an approach is useful in a certain domain
is its cost effectiveness in t ha t domain. In any event, the concept of a domain
of appl icabi l i ty for each approach arose often in the groups.

To get a t ighter grip on this, consider the dist inction made in various ways
in several of the discussion groups between verification, where one establishes
the consistency of one formal object (e. g., a program) with another (e. g., a
specification), and validation, where one establishes the consistency of a formal
object (again a program) with an informal one (e. g., a user requirement). Prov-
ing is all but impossible in the la t te r domain, while testing, though helpful in
both verification and val idat ion, seems par t icular ly well-suited for the lat ter .
Yet the conclusion t ha t we should prove what we can and test wha t we can ' t
prove is premature . Testing can sometimes provide cheap verification. For
example, a though for peace of mind we may want to prove t ha t a certain pro-
gram s ta te is unreachable, test ing can sat isfactori ly demonstra te t h a t a cer tain
program s ta te is reachable.

If the view t h a t test ing and proving are complementary methods of a t ta in-
ing assurance emerges from the group summaries, the view t h a t they share
much is also present. Formal specifications, though not a prerequisite for test-
ing, are useful in generat ing oracle programs. Fur ther , well-modularized pro-
grams are aids to both proving and testing. Similarly, though the discussion
groups found much t h a t we know about proving and testing, they also recog-
nized much t h a t there is much tha t still needs to be learned about each. One
such issue t h a t was par t ly addressed in Goel's discussion of s ta t i s t ica l tes t ing is
determining the point where running more tests ceases to be cost effective.
Presumably , the same question can also be asked for proving.

Acknowledgments
NRL would like to thank , first, the par t ic ipants for their willingness to

share their knowledge, to broaden their own horizons, and to pursue candid and
vigorous discussions on the topics of the workshop. We are par t icular ly
indebted to the tutor ia l presenters: Richard Pla tek , Bill Pase, Don Good, Steven
Zeil, and Richard Taylor; to the discussion group leaders, and to the
members of the requirements panel: K. Speierman of NSA, Wil l iam Wilson of
NASA, W. E. Ford of Oak Ridge Nat ional Laboratory , Dres Zellweger of the
FAA, and Nancy Leveson. John Cherniavsky of Georgetown helped out wi th
several las t -minute crises, and we are grateful to LT Greg Johnson and the oth-
ers oil the COMPASS 86 conference committee for their assistance with the
mundane but crucial details of local arrangements .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 5 Oct 1988 Page 85

NRL Invitational Workshop on Testing and Proving, July, 1986

Discussion Group Summary:

R o l e o f F o r m a l S p e c i f i c a t i o n s

Chair: Jeanet te Wing, Carnegie-Mellon U.

Participants

Dan Craigen, I.P. Sharp
Diane Bri t ton, RCA
Steve Crocker, Aerospace
John Gourlay, Ohio State U.

Ann Marmor-Squires, T R W
DeWayne Perry, A T & T Bell Labs
Frieder yon Henke, SRI
Steven Zeil, U. Mass

Our group had a balanced representat ion from academia and industry, a total
of two from the test ing community and a half dozen from the proving commun-
ity. We focused our discussion on the role of formal specifications in software
development; the current use of specifications in practice; and the future roles
of specifications, all wi th respect to proving and testing.

1. Roles of Formal Specifications for Proving and Testing
In software development, formal specifications can be used for design, documen-
ta t ion, verification, proving, and testing. Ideally, writ ing formal specifications
should guide the software development process. Indeed, it is the act of specify-
ing t ha t often is more beneficial t han having the end product of specifying, i.e.,
the specification document itself. The roles of formal specifications for design,
documentat ion, and especially for verification are well-known; their use is
justified and documented in l i terature. Thus, we concentrate here on the role
of formal specifications for proving, of which verification is a special case, and
testing.

Proving, in a broad sense, is an act ivi ty during which one proves properties of a
formal, i.e., ma themat ica l ly meaningful, enti ty. For example, one proves a pro-
gram correct or t h a t sets have no duplicate elements. Verification, in a narrow
sense, is the act ivi ty during which one proves correctness and consistency pro-
perties of one formal en t i ty wi th respect to another formal ent i ty . Verification
necessitates having a formal specification, whether one is verifying a top-level
specification, low-level code, or some ent i ty in between. Thus, we distinguish

verification from val idat ion where in the la t te r ac t iv i ty one checks for
whether a formal en t i ty (e.g., a specification or program) satisfies an informal
en t i ty (e.g., a client 's set of informally s ta ted requirements).

Testing also necessitates having specifications, though not necessarily formal, as
evidenced by the current practice of using informal or semi-formal specifications
to generate test cases. Any kind of specification, such as operat ional

A C M SIGSOFT S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 6 Oct 1986 Page, 60

specifications, can be used to formulate test ing criteria. Formal specifications
can help narrow the domain of cases to be tested. They can reduce the input
space to a tes table subspace. If a formal specification is executable, or at least
evaluatable , it can be used for writing au tomated oracles. Given the output of
a test case generator and the output of executing a program over a test case,
an au tomated oracle can tell whether an error is present in the program. Tools
used for verification such as au tomated theorem provers and rewrite-rule
engines can thus also be useful for testing. Testing generates the same kinds of
theorems as proving; they tend to be simpler, but in greater abundance. Typi-
cally, tes t ing requires determining whether two expressions are equal or not.
Ins tead of t rying to prove a handful of verification conditions, however, one is
faced with hundreds of expressions to compare or evaluate. Finally, an execut-
able or evaluatable specification itself is subject to current test ing techniques.
These uses of formal specifications for test ing suggest t ha t testing, as for prov-
ing, can and should occur early in the software lifecycle.

Test ing and proving are complementary. Testing is necessary for val idat ion
because of the informal en t i ty involved. Some properties, such as real-time
behavior, are hard to capture in a formal specification and then verify, but
easier to test for. Consider a user interface for which an icon is dragged across
a b i tmap display. A likely requirement of the system would be t ha t the appear-
ance of the moving icon be smooth or continuous. Such "user-friendly" behavior
is hard to s ta te formally. Whereas test ing can help prove t h a t cer tain s ta tes
are reached (liveness), however, some classes of formal specifications are more
helpful in proving t ha t cer tain s ta tes can never be reached (safety). Of course,
test ing is insufficient for life-critical software.

2. C u r r e n t U s e in P r a c t i c e

Formal specifications used in practice are almost exclusively for software design,
verification, and documentat ion, and not for testing.

The major i ty of pract icing software engineers in indust ry use, if anything,
high-level design languages such as PSL/PSA, SADT, Jackson's method, or an
in-house senti-formal design method. The securi ty sector, largely supported by
government contracts , provides the largest communi ty of formal specification
users. Industr ia l research laboratories such as at Aerospace Corporation, IBM,
A T & T Bell Labs, MCC, and DEC, have explored, applied, and gained valuable
experience in formal specification languages, tools, and methods. These experi-
ences seem to represent a few isolated success stories. Academia has been doing
s teady research in the area and spreading its ideas into the industr ial commun-
ity. For example, the Gypsy verification system (University of Texas, Austin)
now exists at 25 sites in the U.S. and Canada .

Outside of Nor th America, in par t icular the Uni ted Kingdom, Denmark, Ger-
many, and France, awareness and use of formal specifications is more common.
A combinat ion of cultural , economic, and historical reasons may explain this
difference. The Vienna Definition Method (VDM) and Z are two examples of

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 5 O c t 1988 P a g e 67

formal specification techniques being t augh t and used (though not heavily) in
industry. VDM, for example, has been used to help define the semantics of Ada
which in turn was used to help develop an Ada compiler.

3. F u t u r e R o l e s

Testing can benefit from more use of formal specifications and from exploiting
technology t h a t has resulted from a decade of verification research such as
automat ic theorem provers. Testing can also benefit from making more use of
da ta type semantics and modular s t ructure of large programs. Research in for-
mal specifications has to go beyond the specification of functional correctness
and securi ty aspects of systems. In part icular , specifying and proving perfor-
mance constraints for real-time systems, and specifying and proving the
recoverabil i ty of da ta of t ransact ion-based dis tr ibuted systems are open prob-
lems. These problems require fundamenta l research, as well as good engineering
to make the theoretical results pala table to practi t ioners.

In order to increase the use of formal specifications, we need more production-
quali ty tools t ha t are packaged properly; more educat ing of managers and
software engineers; more convincing, publicly accessible, wr i t ten examples.
Finally, it is the responsibili ty of those who advocate par t icular specification
languages, tools, and methods to inform the user as to what specific uses the
language, tool, and /o r method are suited for. A user must be aware of a partic-
ular technique 's l imitat ions as well as its benefits.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 5 Oct 1988 Page 08

NRL Invitational Workshop on Testing and Proving, July, 1986

Discussion Group Summary:

H y b r i d A p p r o a c h e s

Chair: Susan L. Gerhart, MCC

Participants

John Cherniavsky, Georgetown U.
Paul Garnett , NSWC-Dahlgren
Mike Gorlick, Aerospace
Larry Hatch, DoD
Nancy Leveson, UC Irvine

Bill Pase, I.P. Sharp
Rami Razouk, UC Irvine
Deb Richardson, U. Mass.
Bob Westbrook, NWC-China Lake

1. Group Miss ion and C o m p o s i t i o n
This group was charged with finding potentially useful combinations of testing
and proving approaches. (Another class of hybrid concerns -- combining
methods within testing and within proving -- is worthy of study, but was not
the focus of the working group.) Perspectives represented by individuals within
the group were: experience with large system testing, building and using proving
systems, building and using Petri net models, defining and using safety models,
and defining and evaluating testing methods.

After justifying further consideration of hybrid approaches, several combina-
tions of approaches were suggested and analysed, resulting in a collection of
problems to be solved.

2. Rea sons for and aga ins t hybrid approaches
Why consider hybrid approaches? Here were the group's initial reactions:

1. A subjective basis lies in experience: it does make you feel more assured to
know tha t both testing and proving methods have been applied to critical
software systems, such as flight control. Would you step on a flight vehicle
whose software had only been proved? Few of us would, but the first shut-
tle launch-computer synch problem reminds us of the deficiencies of testing.
Why do we feel this way? A related subjective conjecture is tha t anything
that makes you think more about your program is bound to improve it.

2. More objectively, no one technology can cut it today. Technology for prov-
ing properties of systems is maturing and becoming industrialized in secu-
rity applications, while considerable testing technology has already found
its way into industrial use. But reliable, production use of either (compar-
able to our current use of and trust in compilers) is not imminent.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 5 Oct 1988 P a g e 89

3. Each approach is based on different assumptions about how the world
works, e.g. proving assumes the world can be axiomatized and testing
assumes the world is continuous.

4. Practitioners of the approaches experience wholly different viewpoints. It is
widely believed tha t multiple viewpoints is a key to finding flaws in any-
thing. The approaches may be used to complement or to check each other.

5. While testing must be based on specifications, the use of proving
encourages more formality in those specifications.

6. The approaches appear to apply differently in different phases of the life
cycle, e.g. operational testing appearing necessary for acceptance and
deployment with proving being both easier and more effective in early
phases. Also, a top level specification may be proved internally consistent
but can be verified only by testing to determine if it behaves according to
our informal, internalized expectations.

there any reasons against using hybrid approaches? Yes:

A hybrid approach may divide the resources available. Furthermore, the
resulting management tasks could be greatly complicated, e.g. maintaining
traceability of both testing and proving data with respect to a system.

2. Testing has worked well enough in the past, so why not perfect it? Simi-
larly, proving is beginning to work well, e.g. in Harlan Mills' IBM Clean-
room approach, so why not perfect that? Or if the separate approaches
aren' t working well, maybe something other than the opposite approach is
needed, e.g. inspections and reviews (which the group decided fell into one
of the two approaches anyway, differing only with more emphasis on peo-
ple than on technology).

3. We don't know how much overlap there may be in using both approaches.
Redundancy could be beneficial, but waste must be avoided.

4. There may be an eminently testable or provable language that could
ameliorate the problems of one approach.

While there are good reasons against hybrid approaches, these reasons can be
turned into problems to be solved (see section 4).

Are

1.

3. C o m b i n a t o r i a l A l t e r n a t i v e s for H y b r i d A p p r o a c h e s

It is not hard to conjure up a variety of combinations that might be useful. The
following table provides the structure for covering many combinations:

P1 P2 ... Pn

Design t t&p t v p

Code p t p

That is, the major life cycle divisions to be considered are designing (the pro-
duction of a description of what is to be implemented to satisfy requirements)

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol I I no 5 O c t 1980 P a g e 70

and coding (the production of the implementat ion) , since their intel lectual
activit ies and technologies differ. There may be many ways of filling in such a
table ,3f approaches, using combinations between and within levels. Here "t" or
"p" denotes some known test ing or proving method, respectively, e.g. a test ing
covers, ge method or an inductive proving method.

The more significant par t of this table is the division into P1, P2, Pn, which
denote any of the following:

Propert ies: Quali t ies t h a t we th ink of as safety, correctness, perfor-
mance, etc.

Par t s : St ructura l par ts of a system, e.g. modules, subsystems, or
slices

Persons: The people judging or providing the necessary qualities,
e.g. buyers, government securi ty certifiers, qual i ty
assurance groups

Processes: Behavioral aspects of a system, e.g. dispensing of money
from an ATM

Phases: Temporal divisions of software production activities, e.g.
acceptance planning, design generat ion

Ideally, an assurance plan for a project could be wri t ten using tables such as
these for all the relevant players, system decompositions, impor tan t properties,
etc. Being realistic, the above tables will always contain at least one t, for test-
ing in the operat ional environment.

There are other hybrid approaches. An intui t ively obvious, apparen t ly univer-
sal combinat ion is to use one approach quickly followed by full-blown applica-
t ion of the other, e.g. test ing a program to make sure it executes on some da ta
before a t t empt ing a proof or doing a 5 minute menta l proof to assure t ha t there
is some reason for believing a program to be tes ted is correct. Another general
approach is to use one method strongly to s t ructure a program then using the
other to provide complementary verification information. For example, the use
of da ta and control invar iants may s t ructure a program while coverage test ing
may be applied in detail.

A more technical approach is the use of equivalence classes to link tests and
proofs, e.g. an inductive proof t ha t all da ta in a class will be t rea ted similarly
by a program while only one member of the class need be tested. Such a process
could be driven by either approach, using equivalence class proofs to reduce the
overall effort of proofs in special cases or using them to reduce the number of
tests t h a t must be made. Yet another hybrid approach is to perform proofs t h a t
leave assumptions to be tes ted in the operat ional context. Other possibilities
include symbolic execution (using symbolic test da ta to generate pa th descrip-
tions which are subjected to simplification using proving methods) and generat-
ing test predicates from specifications.

A C M SIGSOFT S O F T W A R E E N G I N E E R I N G N O T E S vol U no 5 Oct 1986 Page 71

The key task, now, is to characterize the domains of applicability: which
software production models fit the above profiles, which kinds of applications
are best matched to which combinations of approaches, and which methods pro-
vide the greatest assurance to which classes of people needing assurance. It was
rapidly found to be beyond the capability of the working group to perform this
task in one day. Indeed, it proved to be difficult to find any examples where
there was a clear characterization of applicability, e.g. where testing was clearly
easier than proving. Even such examples as finite state machine based programs
had arguments both ways about what was hard and easy. It will be necessary
to better characterize the requirements and assumptions of the testing and
proving approaches before attempting to characterize applicability in specific
situations.

4. P r o b l e m s t o be S o l v e d

The following problems were identified by the working group. The list is hardly
complete, but represents typical problems to be solved by researchers to push
further the possibility of hybrid approaches.

4.1. T h e o r y

1. Precisely define the connection of equivalence classes with testing and
proving methods. Where is this approach effective?

2. Characterize the information content of each approach. What is learned
from testing (what issues are resolved, what facts are obtained)? ditto
proving? Formulate the information overlap. What is useful and what is
wasteful redundancy? What information is missing?

3. Correctness is a well-defined property in most cases. Find good definitions
for other properties of interest: reliability, security, and so on.

4. Develop reusable domain theories (e.g., the theory of paging in an operat-
ing system) to reduce proof over-head.

Of these, problem 2 is new and central to hybrid approaches, while the other
problems are recognized and being worked on.

4 . 2 .

1.

.

.

M e t h o d o l o g y

Assuming executable specification languages become available: how will
they be tested? how will they support proving? how will properties be dis-
tributed between testing and proving?

The hybrid approach of reducing proofs to environmental assumptions
raises the important problem of how their testing will be performed in the
operational environment.

Following the templates described for assigning testing and proving
methods to designs and code, find the proper divisions of labor. In other
words, characterize the domains of applicability of the approaches, taking
into consideration their roles in a hybrid context.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S v o l 11 no 5 O c t 1986 P a g e 72

. S1;udy the ways that testing and proving methods may be systematically
applied in a hybrid context: which orders will be pursued? how will infor-
mation flow?

4°3°

1.

2.

.

T e c h n o l o g y

Develop tools tha t integrate testing and proving approaches.

Find support for traceability and version control in a context of hybrid
verification.

Find programming language semantic manipulators tha t work for both
testing and proving.

4°4°

1.

2.

M e a s u r e m e n t

Devise experiments to ascertain the value in practice of hybrid approaches.

Develop a cost model for determining allocation of testing and proving
methods within the templates.

5. C o n c l u s i o n s

The most significant development of the working group was the number of com-
binations of approaches that appear potentially fruitful, i.e., could not a priori
be excluded from further consideration. Characterizing domains of applicability
for hybrid approaches appears quite challenging.

A balanced view of the potential of hybrid approaches must be maintained,
since at tractive theoretical possibilities may be offset by increased difficulty of
management. Many well-studied technical problems could be solved or
ameliorated in a hybrid context, but new technical problems are readily
apparent .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 5 Oct 1988 Page 73

NRL Invitational Workshop on Testing and Proving, July, 1986

Discussion Group Summary:

L e v e l s o f A s s u r a n c e

Chair: Rich DeMillo, Georgia Tech

Participants

Debbie Cooper, SDC
Paul Fairfield, U. Liverpool
Amrit Goel, Syracuse U.
Bret Har tman , RTI

J. C. Huang, U. Houston
Bill McKeeman, Wang Inst.
Andy Moore, SA&E

1. M o t i v a t i o n f o r P a n e l

The panel was in general agreement t ha t the pr imary motivat ion for con-
sidering the relative levels of assurance provided by testing and proving metho-
dologies was the need for increased quality in software products and software
intensive systems. This need is expressed in several ways, including:

(1) the numbers of reported defects in software systems, and

(2) the increasing functional requirements on software systems.

Testing and Proving are both designed to enhance levels of assurance about
software product quality, but what exactly does tha t mean? In part icular , the
following questions seemed to be relevant:

o Who is being assured?

o About what?

o W h a t consti tutes a "level" of assurance?

A goal of the panel was to construct a set of strawman assertions such as

"Proving is good at in practice."

"Proving is bad at. . . in principle."

Testing may be good at. . .someday.",

where the "..." were to be filled in with definite s ta tements about the kinds of
assurance levels tha t could be achieved.

2. P r o b l e m s

The panel did not achieve its goal. There were three problems t ha t had to
be addressed in the brief time the panel had to isolate some issues.

At first blush, the first problem seemed a surprising one. It dealt with ter-
minology, of all things. There were, of course, the usual terminological wran-
glings over what "verification" means (it means demonstrat ing consistency with
an immediately preceding specification) and what "validat ion" means (it means

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol I I no S O c t 1988 P a g e 74

demonstra t ing sat isfact ion of a user requirement). There was also a set of ter-
minological issues t ha t weren ' t so easily settled. In hindsight , these issues
addressed the second question: wha t is being assured?

In the theory of inductive logic (cf. C. G. Hempel, Aspects of Scientific
Explanation and Other Essays in the Philosophy o/Science,, Collier-MacMillan
Ltd, London, 1965 -- par t icular ly the essay "Confirmation, Induct ion and
Rat ional Belief") the following problem arises. Suppose we are t rying to assess
the degree to which a piece of evidence E confirms a (scientific) hypothesis H.
The extent to which E confirms H may refer, on one hand, to the extent to
which E satisfies some objective criteria t ha t confirmations of H are supposed to
satisfy. On the other hand the degree to which E confirms H may refer to the
extent to which E reliably assesses the t ru th of H and inferences drawn from H.
Logicians have resolved these dichotomies in imperfect ways. Interest ingly,
these seem to be the same problems tha t arise in level of assurance for software:
the first kind of confirmation is really the verification of some specification and
the second is a kind of validation.

The second problem concerned the relatively incompatible points of view
held by developers of commercial software and developers of Defense software.
In the la t te r case, the process of software development is highly managed.
Requirements tend to arise from a well-defined user communi ty ("...in order to
main ta in a sortie rate of _ _ against a specified th rea t in the presence of a
logistics delay of , a fleet of _ _ aircraft , each capable of _ _ hours of mis-
sion flight wi thout critical failure is needed..."). Overall development-
acquisi t ion-deployment decisions are in the hands of identified decision-makers
who gather da ta and evaluat ions aimed at reducing the risk of fau l ty decision-
making. A program manager gathers, monitors and directs the human and
technical , and economic resources needed for the development. Final ly, the
technical designers-builders ac tual ly construct and test the system. In the case
of commercial software development, there is considerably more var ia t ion. The
development process may be as highly s t ructured as indicated above. On the
other hand, commercial software is frequently developed by one or two pro-
grammers, working from informal (sometimes non-existent) requirements
specifications, and wi thout clear lines of au thor i ty for decision-making. As
development proceeds from highly s t ructured environments to less s t ruc tured
ones, the need for formal assurance mechanisms becomes less pronounced. In
addit ion, a separate panel of the present workshop (the "requirements panel")
identified large systems as the ta rget for the workshop. Accordingly the panel
agreed to concentrate on the Defense software problem.

The final problem centered around the dichotomy between economic and
technical mat ters . Specifically, the issue to be addressed was whether or not
economic l imitat ions and concerns were sufficiently technical and well-defined to
war ran t consideration by the panel. The answer seemed to be a resounding
"yes".

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 5 Oct 1988 Page 76

3. A u d i e n c e s v e r s u s I s s u e s

No uniform criteria exist for relating the "Who" to the "About Wha t " com-
ponents of assurance. For a given software development effort, the issues to be
resolved relate to different audiences as i l lustrated below.

Issues

Audience Technical Operational

Components System Mission Need

User

Dec.

Maker

Pgm Mgr

Builder

<

< . >

< - - - > •

< - - - - >

>

The technical issues are those questions tha t must be addressed to adequately
assess engineering quality. In hardware, these issues may involve such criteria
as machining tolerances. In software the technical issues may question generic
characteristics such as whether certain coding s tandards have been followed or
specific characteristics such as whether or not a certain specification has been
satisfied. Operat ional issues, on the other hand, are those questions tha t are
raised to provide insight into operational suitabili ty and effectiveness. Typical
examples of operat ional issues are the extent to which the system performance
envelope satisfies mission needs and whether overall system availabili ty is
sufficient to ensure completion of mission objectives.

4. L e v e l s o f A s s u r a n c e

Assurance relates observational or other information (e.g., a correctness
proof) about software to a set of issues. This relationship is generally esta-
blished by specifying a property Q tha t -- when satisfied - resolves the issue.
Examples of such properties, with respect to a software system S, are the fol-
lowing:

o S has branching complexity less than x

o S is consistent with specification s ta tement D,

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 6 Oct 1988 Page 76

o S achieves an operat ional reliabili ty of at least R(t)

o S achieves performance parameter P

o S meets user expectations.

A level o/ assurance represents a degree of confidence t h a t one of these
issues has been resolved. Equivalently, a level of assurance is a degree of
confidence t h a t one of the specified properties obtains. There are three al terna-
tive definitions t ha t arise natural ly :

Definition A: The degree of confidence t ha t the software behaves as
intended.

Definition B: For specified property Q, the degree of confidence t ha t the
software satisfies Q.

Definition C: For specified property Q and person P, the degree of confidence;
possessed by P tha t the software satisfies Q.

All three definitions appear to be important , a l though they are increasingly less
t rac tab le insofar as they apparen t ly demand increasingly specific assurances.

']?he definitions, however, leave open an impor tan t problem -- one which is,
on the surface, as difficult as the original: W h a t is a degree of confidence?

To give an operat ional ly meaningful definition, three different properties Q
need to be distinguished. Actual ly, the (single) proper ty Q, mentioned above,
resolves into three q ' s (which we will call Q(I), Q(A), and q(A)) t h a t are needed
to provide a sensible answer to a technical or an operat ional issue.

Q(I): This is the ideal or the required property.

Q(A): This is the actual property possessed by the system

q(A): This is the property t ha t we are able to infer t h a t S possesses by
a t t empt ing to observe (or infer) Q(A).

The "degree of confidence" mentioned in Definitions A-C is s imply the odds we
are willing to bet t h a t the difference between the ideal proper ty Q(I) and the
measured proper ty q(A) is really the difference between the ideal proper ty and
the true proper ty of the system.

The notion of "bet t ing odds" is an impor tan t one. It suggests a connection
between these definitions and economic concepts such as cost versus benefit,
cost versus risk, and cost-of-error versus level-of-effort. It is also sufficiently
loosely defined to admit many interpreta t ions . In some circumstances (e.g.,
when there are stochast ic elements t ha t can be described or controlled) bet t ing
odds may, in fact, be s ta t i s t ica l ly meaningful probabilities. In other cases, bet-
t ing odds may reflect subjective judgements . In still others, they may represent
ma themat ica l assessments of val idi ty or conditional validi ty.

The "ideal" proper ty is an impor tan t aspect of the problem. It may seen]
na tu ra l to factor it out, however, doing so may turn the problem of assessing
levels of assurance into an operat ional ly meaningless problem. Suppose t h a t
"properties" are really quant i ta t ive parameters , so t h a t the degree of confidence
corresponds to the odds t ha t

A C M SIGSOFT S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 5 Oct 1988 Page 77

Q(I)- Q(A) -- Q(I) - q(A).

It may seem na tura l to repair this equation as follows:

Q(A) -- q(A).

This doesn' t always work, since a convincing level of assurance in the first case
may not be convincing in the second (these paradoxes involving logically
equivalent properties are well-known in logic and may be found, for example, in
Hempel 's essay, cited above).

Finally, the issue of "Who" can be incorporated or addressed in these
definitions as appropriate .

A summary conclusion -- maybe an obvious one t ha t did not require
Definitions A-C -- is tha t , whatever we mean by levels of assurance, these levels
are not to ta l ly ordered. There will be incomparable levels as well as long and
short chains. A theory is needed to establish some basic properties of the order-
ing.

5. E s t a b l i s h i n g t h e O r d e r i n g o f L e v e l s -- A n A g e n d a

One approach to providing an ordering of degrees of confidence is to iden-
t i fy a set of assurance functions, the issues and audience they address, and the
extent to which a given methodology exhaustively implements the function.
Examples of such functions include the following:

o find errors

o demonstra te operat ional performance

o val idate software against informal user expectat ions and needs

o val idate software against a s ta tement of user requirements

o verify the software against a given specification

o val idate a specification against informal user expectat ions and needs

o val idate software against a s ta tement of user requirements

o verify a specification against a given (prior) specification

o exhibit a given stat ic property of the software

o ensure adherence to a given development approach

o certify the software against some (pre-existing) s t andard

o demonstra te the modes and effects of software failure

For example, verifying the program addresses the correctness proper ty and is
primari ly of importance to builders and the program managers. While a valid
proof provides high confidence in correctness, the extent to which test ing pro-
vides degrees of confidence is a subject of current research. On the other hand,
failure modes and effects analyses are of critical importance to users. Failure
modes are exhibited by test ing at levels t ha t have not really been determined
with great precision. Failure modes and effects are, by definition, not exhibited
by proving so proving can give no confidence in this area.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol I I no 5 Oct 1988 P a g e 78

NRL Invitational Workshop on Testing and Proving, July, 1986

Discussion Group Summary:

S o f t w a r e E n g i n e e r i n g I n t e r a c t i o n s

Chair: John Gannon, Univ. of Maryland

Participants

Susan Dart, SEI
Ben DiVito, TRW
Paul Eggert, SDC
Stuart Faulk, NRL

Richard Kuhn, NBS
Peter Neumann, SRI
Richard Smaby, MITRE
Dick Taylor, UC Irvine

Our discussions focussed on the impact of testing/proving considerations on the
structure of software systems and on other software engineering practices and
goals. We also tried to assess current practices to determine what kinds of pro-
perties were likely to be demonstrated using the respective technologies, and
organizational issues relating to testing/proving.

It is obvious tha t good system design makes both testing and proving much
easier. Program verification benefits both from layers of abstraction and from
modular decomposition within the layers. In the verification of a hierarchical
system, we demonstrate tha t lower-level layers correctly implement higher-level
layers until a layer is reached that can be executed on a target machine. The
series of verifications reduces the complexity of the mapping function between
states of the implementation layer and those of the highest layer design.
Within each layer, modularity makes specifications easier to write and keeps
proofs smaller. More detailed discussions of these issues can be found in [1-4].
Testing places smaller demands on system structure than does verification, but
still benefits from hierarchical and modular decomposition. Although intermedi-
ate layers in a hierarchical design may not be executable on the target machine,
they may still be used in symbolic executions. Modularity makes it possible to
execute a system component over more of its domain than might be exercised
by an acceptance test, perhaps resulting in more robust behavior when the sys-
tem is operational.

We discussed the possibility that designing for easy testing/proving might nega-
tively impact other software engineering goals (e.g., ease of change, maintaina-
bility, etc.), or affect other software engineering practices. Of the goals, we con-
cluded tha t only efficiency might suffer. While it is possible tha t excessive
layering or modularity imposes run-time overhead, the implemented version of
the system need not be identical to the verified version. Correctness-preserving
transformations (e.g., inline expansion of procedures) can be applied to increase
efficiency. Another issue raised was the possibility tha t a less efficient design

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol I I no 5 O c t 1985 P a g e 79

al ternat ive would be selected in order to reduce the difficulty of its proof. We
felt t ha t the relationship between tes t ing/proving considerations and software
engineering practices was mutual ly beneficial. For example, we discussed how
rapid prototyping might be used to refine and test specifications.

In discussing what kind of properties were likely to be amenable to
tes t ing/proving, we concluded tha t each type of val idat ion technique had a role
in the software engineering process. Properties tha t are defined in terms of
avoiding enumerable anomalies (e.g., downward flows of information in multi-
level security models, safety, liveness, etc.) were good candidates for
verification. More complex properties (e.g., the function computed by a unit of
code) could either be tested or proved, but tha t both techniques relied on the
presence of a formal specification for the function. (Even program testers
agreed on the usefulness of a formal specification in recognizing errors.) Proper-
ties t ha t were not generally specified formally, but which could be consistently
judged by human oracles (e.g., system performance, the behavior of machine
ari thmetic, etc.), were more likely to be tested than proved. One final category
of properties emerged under the title user expectations" (things t ha t are incon-
sistently judged by human oracles such as user-friendliness"). Neither valida-
t ion technique seems to be much help as long as these properties remain so ill
defined.

Finally, we considered organizat ional issues relating to the use of
tes t ing/proving techniques. Current ly industry makes little use of either
verification or the more formal aspects of testing (e.g., test oracles, symbolic
execution, or even test coverage metrics). This s i tuat ion exists because budgets
are set for producing products ra ther than for developing tools or t ra ining per-
sonnel to use new methods or tools. A manager seeking to produce a system
within time and money constraints is unlikely to dilute team effort producing
new tools, documenting tools his team developed for their own project, or train-
ing his team to use a new method or tool. Only changes in the economic basis
for decision making (perhaps in response to technical breakthroughs in com-
ponent reusability) are likely to bring changes in this behavior. Software reuse
can raise both product quality and programmer productivity, making
verification viable. We discussed the central role tha t formal specifications are
likely to play in software reuse, increasing programmers ' confidence in what
software components do and decreasing their eagerness to rewrite a piece of
software they cannot understand. We also recognized tha t inadequate
mathemat ica l educat ion is likely to make programmers reluctant to t ry either
verification or testing based on formal specifications.

R e f e r e n c e s

[1] L. Robinson and K.N. Levitt . Proof techniques for hierarchically struc-
tured programs, Communications of the ACM 20, 4, (April 1977), 271-283.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 5 Oct 1988 PagE: 80

[2] J.M. Spitzen, K.N. Levitt, and L. Robinson. An example of hierarchical
design and proof, Communications of the ACM 21, 12, (December 1978),
1064-1075.

[3] M. Melliar-Smith and J. Rushby. The enhanced HDM system for
specification and verification, ACM SIGSOFT Software Engineering Notes
10, 4, (August 1985), 41-43.

[4] P.G. Neumann. On hierarchical design of computer systems for critical
applications, IEEE Trans. Software Engineering, 12, 9, (Sept 1986).

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol II no 5 Oct 1988 Page 81

NRL Invitational Workshop on Testing and Proving, July, 1986

Discussion Group Summary:

Cost Ef fec t iveness

Chair: Donald I. Good, U. Texas

Participants

Mark Cornwell, NRL
David Hedley, U. Liverpool
Joseph Kmiecik, Grumman
David Musser, GE

Richard Pla tek , Odyssey Res. Assoc.
Vinceent Reed, Teledyne-Brown
Barry Stauffer, Logicon

I must begin this report by apologizing to the other members of this group
for not being able to a t t end the session which I was supposed to chair! I was
not informed of the s i tuat ion t ha t caused my absence until the afternoon before
the session was scheduled to be held. I, therefore, would like to t h a n k and
commend all of the par t ic ipants in this session for their efforts to address
some very difficult issues and to come forward with some constructive ideas.

One of my current interests is discovering wha t kind of hard, objective
justifications, if any, can be made for the cost-effectiveness of formal
verification. To put it in commercial terms, how do I persuade a manager t ha t
verification might reduce some impor tant costs? The search for an answer to
t ha t question has lead me to pose the similar question for testing. I have
found this to be a surprisingly difficult and complex set of issues to come to
grips with. So, my ulterior motive in agreeing to chair this session was to
bring some of the diverse expertise of this very capable group of people to
bear on these difficult issues. I deeply regret t ha t I was unable to parti-
cipate in the discussion of these impor tant issues.

I especially want to t hank Mark Cornwell for the notes and slides t ha t
he prepared for the workshop wrap-up session on Fr iday. The summary t ha t is
given below is primari ly my in terpre ta t ion and some slight elaborat ion of
Mark 's slides.

1. M a j o r Issues

The broad issue that was addressed by the session was the relative
cost-effectiveness of testing and proving. To provide some structure for the
discussion, several major questions were posed and discussed.

- Which approach is more cost effective in the long run?
- What are the components of cost?
- What determines cost effectiveness?
- How can it be assessed?

These questions led naturally to an attempt to formulate some working
definitions. W h a t is "testing?" W h a t is "proving?" No definitive answers were

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol U no 5 Oct 1088 PagE: 82

provided because the boundaries between the two are not sharply defined.
Generally, tes t ing was character ized as "back-end work" t ha t is done after a
product is produced, whereas proving was character ized as "front-end work"
which is done before a product is produced. It generally was agreed t h a t there
is a wide spectrum of rigor t ha t can be applied in both test ing and proving.

2 . C o s t - B e n e f i t A n a l y s i s

The session a t t empted to take a cost-benefit approach to comparing test-
ing and proving. Several kinds of cost components were enumerated. The
idea was t ha t it might be possible to est imate the cost of each component
for both test ing and proving, to enumerate the various benefits of these com-
ponents, and to est imate their value. The in tent was t ha t such an analysis of
components might provide at least one consistent basis for comparing test ing
and proving. As the following sections show, the group got s t a r t ed toward
this goal, but fell well short of completion.

2 . 1 . C o s t C o m p o n e n t s

']?he following components of software cost were identified. In most
cases, they apply both to test ing and to proving.

- Development of formal or informal specifications.
- Run time to perform test ing and proving.
- Da t a reduction.
- Eva lua t ion of test results.
- Detect ing errors.
- Fixing errors. There have been some studies t h a t indicate t h a t the cost

to fix an error roughly doubles as it goes undetected at each successive
stage of software development. The following set of numbers are
typical of the kinds of cost increases frequently quoted [Stuhl 85]:

Requirements $349
Design $876
Code & Unit Test $1750
Test & Integra t ion $12782

The way tha t these numbers are interpreted is t ha t if a requirements error
is detected during the requirements phase of a project, it costs about
$349 to fix it, whereas if t ha t same error is not detected until test
and in tegra t ion time, the cost is over $12,000. These numbers frequently
are used to support the argument t ha t early error detect ion reduces
costs (and, therefore, you should hire an IV&V firm to save you money)!
- Development of support tools such as the following:

* Simulators to provide test data .
* Test analysis support tools.
* Mechanical proof support tools.

Most of these cost components have both a human labor cost and also a
cost of computing resources. The price of the human labor may vary
considerably depending on the capabili t ies required for the various tasks.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no S Oct 1980 P a g e 83

2 .2 . B e n e f i t C o m p o n e n t s

The following components of benefits of proving and
identified.

- Increase in Mean Time Between Failures (MTBF).
- Reduced cost of errors to client.
- Political benefit to producer of no errors.
- Reduct ion in risk to client.
- Reduct ion in maintenance costs.

test ing also were

3. S t a t e o f t h e A r t

Some discussion was devoted to exploring the s tate of the art in testing
and proving.

3.1 . T o d a y

At present, it is often programmatic issues tha t drive choices of testing or
verification or proof methodologies.

Sometimes, the use of certain methodologies are manda ted . (As one
member of the session commented to me on Friday, "If the government
manda tes a methodology, it's cost-effective!") The A1 level of certifying
secure operat ing systems is a case in point. These certifications manda te the
use of formal top level specifications and proofs about those specifications.

Often, the choices are driven by management considerations. Assurance
is a subjective thing, in tha t often what kind of assurance is provided depends
very much on who it is being provided to. Unfortunately, the management
tha t needs to be assured often is not well informed about various assurance
techniques and, therefore, is not able to interpret the assurance evidence prop-
erly. Wha t probably is needed is a variety of worked out examples of various
projects tha t applying testing and proving techniques. These examples would
enable managers and practi t ioners alike to see the effectiveness of various
methods on part icular examples.

The only advice tha t the group has to offer in this area is tha t , in making
these decisions, it is necessary to weigh factors other than mathemat ica l
verification or testing. It is important to consider the interact ion of various
techniques and to define and approach assurance as early as possible in the
project.

3.2 . T o m o r r o w

Several trends were identified tha t the group believed will affect the cost
effectiveness of both testing and verification.

- N a r r o w i n g the gap between formal specification languages and
programming languages.
- Evolution of declarative languages.
- Machine architectures to support declarative languages.
- Networks, multiple processor architectures tha t support continuous

testing.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S v o l 1 1 n o 5 O c t 1 9 8 8 P a g e 8 4

Possible widespread acceptance of a s tandard formal specification
language.

4 . C o s t - E f f e c t i v e n e s s F a c t o r s

The following issues were identified as affecting the cost effectiveness of
system assurance.

- Criticality of properties assured.
- Isolation of properties in a small amount of code or spec.
- Formalizabil i ty of properties.
- Size of the system.
-Usefulness of a test result.
- Provabil i ty of a property.

It was observed tha t cost effectiveness is not a question tha t can be answered
in isolation. It depends greatly on the characteristics of a specific problem.

5 . R e c o m m e n d a t i o n

As a final recommendat ion, the part ic ipants in the session suggested a
handbook of various assurance techniques. This handbook would include
the following items:

- Definitions of terminology.
- Enumera t ion of techniques.
- Wha t kind of assurance they give.
- W h a t benefits they provide.
- W h a t they cost.

References to example efforts.

Such a handbook could provide a common ground for both the technical and
the customer community.

Reference

[Stahl 85] Stanley H. Stahl, Sylvana Garlepp Nomicos. Cost-Effectiveness
of Software Independent Verification and Validation. Techni-
cal Report ATD 85167, Logicon, September, 1985.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 11 no 8 O c t 1988 P a g e 8g

SOFTWARE PROVING AND TESTING

Harlan D. Mills
IBM Corporation and University of Maryland

This Workshop has produced many interesting and useful ideas
about software proving and testing. In fact, I believe it
is particularly important to consider proving and testing
together. It is not a question of proving or testing.
~Neither is sufficient. But the combination of proving and
testing is the best idea on the software horizon today.

Testing has been a fixture in software from its inception.
Dijkstra has pointed out that testing shows the presence of
errors but not their absence. But statistical testing from
a population of software usage scenarios can do better, by
providing scientific, objective evidence of software
reliability.

Proving is of more recent origin. Dijkstra's motivation in
structured programming was to reduce the lengths of proofs.
Variable free proof procedures that scale up to large
programs, but with increased individual fallibility, can be
used with additional checks and balances to decrease team
fallibility to the point of eliminating the need for
software debugging prior to system testing.

Formality is critical for both proving and testing. But
formality should be defined at the semantic level, not the
syntax level, with the goal of repeatability in human
interpretation rather than this or that representation.
example, a formal specification for a data abstraction
should be defined by a mathematical relation, however
represented, plus a probability measure on the iterated
product sets of its domain, to define usage scenarios.

For

The combination of software proving and testing allows the
definition of software development under statistical quality
control. The short history of software would seem to
indicate that software development, a creative process, and
statistical quality control, an objective process, are
contradictions in terms. However, with formal
specifications that include probability measures on usage
scenarios, the statistical quality control process can be
imposed literally on software development.

8/29/86

