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Overview 

The Naval  Research Labora tory  sponsored this workshop to invigorate 
research in both program verification and program test ing through cross- 
ferti l ization, to document the s ta te  of the art  and practice in both areas, and to 
identify current  assurance requirements and techniques for meeting them. 
Approximate ly  50 invited researchers and pract i t ioners par t ic ipa ted  over a 3- 
day period. The workshop was held in conjunction with  the COMPASS 86 
conference, and the initial and final days of the workshop were open to COM- 
PASS at tendees.  

Tutorials  character izing the current  s ta te  of test ing and proving techniques 
and identifying indust ry  and government assurance requirements occupied the 
first day of the workshop. These provided a common base for five discussion 
groups held during the second day. The discussion groups addressed (1) the role 
of specifications in test ing and proving, (2) hybrid approaches of test ing and 
proving, (3) levels of assurance, (4) interact ions between tes t ing/proving  and 
software engineering, and (5) cost effectiveness. The leader of each of these 
groups summarized the discussions and conclusions on the final morning. Har- 
lan Mills of IBM then provided a critique of these results. Amrit  Goel of Syra- 
cuse provided an impromptu closing ta lk  on al ternat ive s ta t is t ica l  models for 
software test ing 

The accompanying summaries were wri t ten  by the discussion group leaders 
following the workshop as a means of documenting our results and circulating 
them to a wider audience. Although the leaders have tried to record fai thful ly 
the results of the discussions, these summaries (and this preface) have not been 
reviewed or approved by the other par t ic ipants  of the groups. In addition, Dr. 
Mills has provided a note on his thoughts  about  the workshop topics. 

Comments 

An interest ing fact t ha t  cannot  be gleaned from examining the group sum- 
maries is the popular i ty  of each group as determined by the number  of partici- 
pants  requesting to be in t ha t  group. For example, we had originally planned 
for a sixth group on domains of applicabili ty,  but  could find no takers ,  and the 
group on cost effectiveness was not popular among those par t ic ipants  who 
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expressed a group preference. Perhaps  the two phenomena are related since a 
major  factor in determining whether  an approach is useful in a certain domain 
is its cost effectiveness in t ha t  domain. In any event, the concept of a domain 
of appl icabi l i ty  for each approach arose often in the groups. 

To get a t ighter  grip on this, consider the dist inction made in various ways 
in several of the discussion groups between verification, where one establishes 
the consistency of one formal object (e. g., a program) with  another  (e. g., a 
specification), and validation, where one establishes the consistency of a formal 
object (again a program) with  an informal one (e. g., a user requirement).  Prov- 
ing is all but  impossible in the la t te r  domain, while testing, though helpful in 
both verification and val idat ion,  seems par t icular ly  well-suited for the lat ter .  
Yet the conclusion t ha t  we should prove what  we can and test  wha t  we can ' t  
prove is premature .  Testing can sometimes provide cheap verification. For 
example, a though for peace of mind we may want  to prove t ha t  a certain pro- 
gram s ta te  is unreachable,  test ing can sat isfactori ly demonstra te  t h a t  a cer tain 
program s ta te  is reachable.  

If the view t h a t  test ing and proving are complementary  methods of a t ta in-  
ing assurance emerges from the group summaries,  the view t h a t  they  share 
much is also present.  Formal  specifications, though not a prerequisite for test- 
ing, are useful in generat ing oracle programs. Fur ther ,  well-modularized pro- 
grams are aids to both proving and testing. Similarly, though the discussion 
groups found much t h a t  we know about  proving and testing, they  also recog- 
nized much t h a t  there is much tha t  still needs to be learned about  each. One 
such issue t h a t  was par t ly  addressed in Goel's discussion of s ta t i s t ica l  tes t ing is 
determining the point where running more tests  ceases to be cost effective. 
Presumably ,  the same question can also be asked for proving. 
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Our group had a balanced representat ion from academia and industry,  a total  
of two from the test ing community and a half  dozen from the proving commun- 
ity. We focused our discussion on the role of formal specifications in software 
development; the current use of specifications in practice; and the future roles 
of specifications, all wi th  respect to proving and testing. 

1. Roles of Formal Specifications for Proving and Testing 
In software development,  formal specifications can be used for design, documen- 
ta t ion,  verification, proving, and testing. Ideally, writ ing formal specifications 
should guide the software development process. Indeed, it is the act of specify- 
ing t ha t  often is more beneficial t han  having the end product of specifying, i.e., 
the specification document itself. The roles of formal specifications for design, 
documentat ion,  and especially for verification are well-known; their  use is 
justified and documented in l i terature.  Thus, we concentrate  here on the role 
of formal specifications for proving, of which verification is a special case, and 
testing. 

Proving, in a broad sense, is an act ivi ty  during which one proves properties of a 
formal, i.e., ma themat ica l ly  meaningful,  enti ty.  For example, one proves a pro- 
gram correct or t h a t  sets have no duplicate elements. Verification, in a narrow 
sense, is the act ivi ty  during which one proves correctness and consistency pro- 
perties of one formal en t i ty  wi th  respect to another  formal ent i ty .  Verification 
necessitates having a formal specification, whether  one is verifying a top-level 
specification, low-level code, or some ent i ty  in between. Thus,  we distinguish 

verification from val idat ion where in the la t te r  ac t iv i ty  one checks for 
whether  a formal en t i ty  (e.g., a specification or program) satisfies an informal 
en t i ty  (e.g., a client 's set of informally s ta ted  requirements). 

Testing also necessitates having specifications, though not necessarily formal, as 
evidenced by the current  practice of using informal or semi-formal specifications 
to generate test  cases. Any kind of specification, such as operat ional  
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specifications, can be used to formulate test ing criteria. Formal  specifications 
can help narrow the domain of cases to be tested.  They  can reduce the input  
space to a tes table  subspace. If a formal specification is executable, or at  least 
evaluatable ,  it can be used for writing au tomated  oracles. Given the output  of 
a test  case generator  and the output  of executing a program over a test  case, 
an au tomated  oracle can tell whether  an error is present in the program. Tools 
used for verification such as au tomated  theorem provers and rewrite-rule 
engines can thus also be useful for testing. Testing generates the same kinds of 
theorems as proving; they  tend to be simpler, but  in greater  abundance.  Typi- 
cally, tes t ing requires determining whether  two expressions are equal or not. 
Ins tead of t rying to prove a handful  of verification conditions, however, one is 
faced with  hundreds of expressions to compare or evaluate.  Finally,  an execut- 
able or evaluatable  specification itself is subject  to current  test ing techniques. 
These uses of formal specifications for test ing suggest t ha t  testing, as for prov- 
ing, can and should occur early in the software lifecycle. 

Test ing and proving are complementary.  Testing is necessary for val idat ion 
because of the informal en t i ty  involved. Some properties, such as real-time 
behavior, are hard  to capture in a formal specification and then verify, but 
easier to test  for. Consider a user interface for which an icon is dragged across 
a b i tmap display. A likely requirement of the system would be t ha t  the appear-  
ance of the moving icon be smooth or continuous. Such "user-friendly" behavior 
is hard  to s ta te  formally. Whereas  test ing can help prove t h a t  cer tain s ta tes  
are reached (liveness), however, some classes of formal specifications are more 
helpful in proving t ha t  cer tain s ta tes  can never be reached (safety). Of course, 
test ing is insufficient for life-critical software. 

2. C u r r e n t  U s e  in P r a c t i c e  

Formal  specifications used in practice are almost exclusively for software design, 
verification, and documentat ion,  and not for testing. 

The major i ty  of pract icing software engineers in indust ry  use, if anything,  
high-level design languages such as PSL/PSA,  SADT, Jackson's  method, or an 
in-house senti-formal design method. The securi ty sector, largely supported by 
government contracts ,  provides the largest communi ty  of formal specification 
users. Industr ia l  research laboratories such as at Aerospace Corporation,  IBM, 
A T & T  Bell Labs,  MCC, and DEC, have explored, applied, and gained valuable 
experience in formal specification languages, tools, and methods.  These experi- 
ences seem to represent a few isolated success stories. Academia has been doing 
s teady research in the area and spreading its ideas into the industr ial  commun- 
ity. For example, the Gypsy verification system (University of Texas, Austin) 
now exists at  25 sites in the U.S. and Canada .  

Outside of Nor th  America,  in par t icular  the Uni ted  Kingdom, Denmark,  Ger- 
many,  and France,  awareness and use of formal specifications is more common. 
A combinat ion of cultural  , economic, and historical reasons may explain this 
difference. The Vienna Definition Method (VDM) and Z are two examples of 
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formal specification techniques being t augh t  and used (though not heavily) in 
industry.  VDM, for example, has been used to help define the semantics  of Ada 
which in turn  was used to help develop an Ada compiler. 

3. F u t u r e  R o l e s  

Testing can benefit from more use of formal specifications and from exploiting 
technology t h a t  has resulted from a decade of verification research such as 
automat ic  theorem provers. Testing can also benefit from making more use of 
da ta  type semantics  and modular s t ructure of large programs. Research in for- 
mal specifications has to go beyond the specification of functional  correctness 
and securi ty aspects of systems. In part icular ,  specifying and proving perfor- 
mance constraints  for real-time systems, and specifying and proving the 
recoverabil i ty of da ta  of t ransact ion-based dis tr ibuted systems are open prob- 
lems. These problems require fundamenta l  research, as well as good engineering 
to make the theoretical  results pala table  to practi t ioners.  

In order to increase the use of formal specifications, we need more production- 
quali ty tools t ha t  are packaged properly; more educat ing of managers  and 
software engineers; more convincing, publicly accessible, wr i t ten  examples. 
Finally,  it is the responsibili ty of those who advocate par t icular  specification 
languages, tools, and methods to inform the user as to what  specific uses the 
language, tool, and /o r  method are suited for. A user must be aware of a partic- 
ular technique 's  l imitat ions as well as its benefits. 
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1. Group  Miss ion  and C o m p o s i t i o n  
This group was charged with finding potentially useful combinations of testing 
and proving approaches. (Another class of hybrid concerns -- combining 
methods within testing and within proving -- is worthy of study, but was not 
the focus of the working group.) Perspectives represented by individuals within 
the group were: experience with large system testing, building and using proving 
systems, building and using Petri net models, defining and using safety models, 
and defining and evaluating testing methods. 

After justifying further consideration of hybrid approaches, several combina- 
tions of approaches were suggested and analysed, resulting in a collection of 
problems to be solved. 

2. Rea sons  for and aga ins t  hybrid  approaches  
Why consider hybrid approaches? Here were the group's initial reactions: 

1. A subjective basis lies in experience: it does make you feel more assured to 
know tha t  both testing and proving methods have been applied to critical 
software systems, such as flight control. Would you step on a flight vehicle 
whose software had only been proved? Few of us would, but the first shut- 
tle launch-computer synch problem reminds us of the deficiencies of testing. 
Why do we feel this way? A related subjective conjecture is tha t  anything 
that  makes you think more about your program is bound to improve it. 

2. More objectively, no one technology can cut it today. Technology for prov- 
ing properties of systems is maturing and becoming industrialized in secu- 
rity applications, while considerable testing technology has already found 
its way into industrial use. But reliable, production use of either (compar- 
able to our current use of and trust in compilers) is not imminent. 
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3. Each approach is based on different assumptions about how the world 
works, e.g. proving assumes the world can be axiomatized and testing 
assumes the world is continuous. 

4. Practitioners of the approaches experience wholly different viewpoints. It is 
widely believed tha t  multiple viewpoints is a key to finding flaws in any- 
thing. The approaches may be used to complement or to check each other. 

5. While testing must be based on specifications, the use of proving 
encourages more formality in those specifications. 

6. The approaches appear to apply differently in different phases of the life 
cycle, e.g. operational testing appearing necessary for acceptance and 
deployment with proving being both easier and more effective in early 
phases. Also, a top level specification may be proved internally consistent 
but can be verified only by testing to determine if it behaves according to 
our informal, internalized expectations. 

there any reasons against using hybrid approaches? Yes: 

A hybrid approach may divide the resources available. Furthermore, the 
resulting management tasks could be greatly complicated, e.g. maintaining 
traceability of both testing and proving data with respect to a system. 

2. Testing has worked well enough in the past, so why not perfect it? Simi- 
larly, proving is beginning to work well, e.g. in Harlan Mills' IBM Clean- 
room approach, so why not perfect that? Or if the separate approaches 
aren' t  working well, maybe something other than the opposite approach is 
needed, e.g. inspections and reviews (which the group decided fell into one 
of the two approaches anyway, differing only with more emphasis on peo- 
ple than on technology). 

3. We don't know how much overlap there may be in using both approaches. 
Redundancy could be beneficial, but waste must be avoided. 

4. There may be an eminently testable or provable language that  could 
ameliorate the problems of one approach. 

While there are good reasons against hybrid approaches, these reasons can be 
turned into problems to be solved (see section 4). 

Are 

1. 

3. C o m b i n a t o r i a l  A l t e r n a t i v e s  for  H y b r i d  A p p r o a c h e s  

It is not hard to conjure up a variety of combinations that  might be useful. The 
following table provides the structure for covering many combinations: 

P1 P2 ... Pn 

Design t t&p t v p 

Code p t p 

That is, the major life cycle divisions to be considered are designing (the pro- 
duction of a description of what is to be implemented to satisfy requirements) 
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and coding (the production of the implementat ion) ,  since their  intel lectual  
activit ies and technologies differ. There may be many  ways of filling in such a 
table ,3f approaches,  using combinations between and within levels. Here "t" or 
"p" denotes some known test ing or proving method, respectively, e.g. a test ing 
covers, ge method or an inductive proving method. 

The more significant par t  of this table is the division into P1, P2, Pn,  which 
denote any  of the following: 

Propert ies:  Quali t ies t h a t  we th ink  of as safety,  correctness, perfor- 
mance, etc. 

Par t s :  St ructura l  par ts  of a system, e.g. modules, subsystems,  or 
slices 

Persons: The people judging or providing the necessary qualities, 
e.g. buyers, government securi ty certifiers, qual i ty  
assurance groups 

Processes: Behavioral  aspects of a system, e.g. dispensing of money 
from an ATM 

Phases:  Temporal  divisions of software production activities, e.g. 
acceptance planning,  design generat ion 

Ideally, an assurance plan for a project could be wri t ten  using tables such as 
these for all the relevant  players, system decompositions, impor tan t  properties, 
etc. Being realistic, the above tables will always contain at  least one t, for test- 
ing in the operat ional  environment.  

There are other  hybrid approaches.  An intui t ively obvious, apparen t ly  univer- 
sal combinat ion is to use one approach quickly followed by full-blown applica- 
t ion of the other,  e.g. test ing a program to make sure it executes on some da ta  
before a t t empt ing  a proof or doing a 5 minute menta l  proof to assure t ha t  there 
is some reason for believing a program to be tes ted is correct. Another  general 
approach is to use one method strongly to s t ructure  a program then using the 
other  to provide complementary  verification information.  For example, the use 
of da ta  and control invar iants  may s t ructure  a program while coverage test ing 
may be applied in detail.  

A more technical  approach is the use of equivalence classes to link tests  and 
proofs, e.g. an inductive proof t ha t  all da ta  in a class will be t rea ted  similarly 
by a program while only one member of the class need be tested.  Such a process 
could be driven by either approach,  using equivalence class proofs to reduce the 
overall effort of proofs in special cases or using them to reduce the number  of 
tests  t h a t  must  be made. Yet  another  hybrid approach is to perform proofs t h a t  
leave assumptions to be tes ted in the operat ional  context.  Other  possibilities 
include symbolic execution (using symbolic test  da ta  to generate pa th  descrip- 
tions which are subjected to simplification using proving methods) and generat-  
ing test  predicates from specifications. 
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The key task, now, is to characterize the domains of applicability: which 
software production models fit the above profiles, which kinds of applications 
are best matched to which combinations of approaches, and which methods pro- 
vide the greatest assurance to which classes of people needing assurance. It was 
rapidly found to be beyond the capability of the working group to perform this 
task in one day. Indeed, it proved to be difficult to find any examples where 
there was a clear characterization of applicability, e.g. where testing was clearly 
easier than proving. Even such examples as finite state machine based programs 
had arguments both ways about what was hard and easy. It will be necessary 
to better characterize the requirements and assumptions of the testing and 
proving approaches before attempting to characterize applicability in specific 
situations. 

4. P r o b l e m s  t o  be  S o l v e d  

The following problems were identified by the working group. The list is hardly 
complete, but represents typical problems to be solved by researchers to push 
further the possibility of hybrid approaches. 

4.1. T h e o r y  

1. Precisely define the connection of equivalence classes with testing and 
proving methods. Where is this approach effective? 

2. Characterize the information content of each approach. What  is learned 
from testing (what issues are resolved, what facts are obtained)? ditto 
proving? Formulate the information overlap. What  is useful and what is 
wasteful redundancy? What  information is missing? 

3. Correctness is a well-defined property in most cases. Find good definitions 
for other properties of interest: reliability, security, and so on. 

4. Develop reusable domain theories (e.g., the theory of paging in an operat- 
ing system) to reduce proof over-head. 

Of these, problem 2 is new and central to hybrid approaches, while the other 
problems are recognized and being worked on. 

4 . 2 .  

1. 

. 

. 

M e t h o d o l o g y  

Assuming executable specification languages become available: how will 
they be tested? how will they support proving? how will properties be dis- 
tributed between testing and proving? 

The hybrid approach of reducing proofs to environmental assumptions 
raises the important problem of how their testing will be performed in the 
operational environment. 

Following the templates described for assigning testing and proving 
methods to designs and code, find the proper divisions of labor. In other 
words, characterize the domains of applicability of the approaches, taking 
into consideration their roles in a hybrid context. 
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. S1;udy the ways that  testing and proving methods may be systematically 
applied in a hybrid context: which orders will be pursued? how will infor- 
mation flow? 

4°3° 

1. 

2. 

. 

T e c h n o l o g y  

Develop tools tha t  integrate testing and proving approaches. 

Find support for traceability and version control in a context of hybrid 
verification. 

Find programming language semantic manipulators tha t  work for both 
testing and proving. 

4°4° 

1. 

2. 

M e a s u r e m e n t  

Devise experiments to ascertain the value in practice of hybrid approaches. 

Develop a cost model for determining allocation of testing and proving 
methods within the templates. 

5.  C o n c l u s i o n s  

The most significant development of the working group was the number of com- 
binations of approaches that  appear potentially fruitful, i.e., could not a priori 
be excluded from further consideration. Characterizing domains of applicability 
for hybrid approaches appears quite challenging. 

A balanced view of the potential of hybrid approaches must be maintained, 
since at tractive theoretical possibilities may be offset by increased difficulty of 
management.  Many well-studied technical problems could be solved or 
ameliorated in a hybrid context, but new technical problems are readily 
apparent .  
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1. M o t i v a t i o n  f o r  P a n e l  

The panel was in general agreement t ha t  the pr imary motivat ion for con- 
sidering the relative levels of assurance provided by testing and proving metho- 
dologies was the need for increased quality in software products and software 
intensive systems. This need is expressed in several ways, including: 

(1) the numbers of reported defects in software systems, and 

(2) the increasing functional  requirements on software systems. 

Testing and Proving are both designed to enhance levels of assurance about 
software product quality, but  what  exactly does tha t  mean? In part icular ,  the 
following questions seemed to be relevant:  

o Who is being assured? 

o About  what? 

o W h a t  consti tutes a "level" of assurance? 

A goal of the panel was to construct a set of strawman assertions such as 

"Proving is good at  ..... in practice." 

"Proving is bad at. . . in principle." 

Testing may be good at. . .someday.", 

where the "..." were to be filled in with definite s ta tements  about  the kinds of 
assurance levels tha t  could be achieved. 

2.  P r o b l e m s  

The panel did not achieve its goal. There were three problems t ha t  had to 
be addressed in the brief time the panel had to isolate some issues. 

At first blush, the first problem seemed a surprising one. It dealt  with ter- 
minology, of all things. There were, of course, the usual terminological wran- 
glings over what  "verification" means (it means demonstrat ing consistency with 
an immediately preceding specification) and what  "validat ion" means (it means 
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demonstra t ing sat isfact ion of a user requirement). There was also a set of ter- 
minological issues t ha t  weren ' t  so easily settled. In hindsight ,  these issues 
addressed the second question: wha t  is being assured? 

In the theory of inductive logic (cf. C. G. Hempel, Aspects of Scientific 
Explanation and Other Essays in the Philosophy o/Science,, Collier-MacMillan 
Ltd,  London, 1965 -- par t icular ly  the essay "Confirmation, Induct ion and 
Rat ional  Belief") the following problem arises. Suppose we are t rying to assess 
the degree to which a piece of evidence E confirms a (scientific) hypothesis  H. 
The extent  to which E confirms H may refer, on one hand,  to the extent  to 
which E satisfies some objective criteria t ha t  confirmations of H are supposed to 
satisfy. On the other  hand  the degree to which E confirms H may  refer to the 
extent  to which E reliably assesses the t ru th  of H and inferences drawn from H. 
Logicians have resolved these dichotomies in imperfect ways. Interest ingly,  
these seem to be the same problems tha t  arise in level of assurance for software: 
the first kind of confirmation is really the verification of some specification and 
the second is a kind of validation.  

The second problem concerned the relatively incompatible points of view 
held by developers of commercial software and developers of Defense software. 
In the la t te r  case, the process of software development is highly managed.  
Requirements  tend  to arise from a well-defined user communi ty  ("...in order to 
main ta in  a sortie rate  of _ _  against  a specified th rea t  in the presence of a 
logistics delay of , a fleet of _ _  aircraft ,  each capable of _ _  hours of mis- 
sion flight wi thout  critical failure is needed..."). Overall  development- 
acquisi t ion-deployment decisions are in the hands  of identified decision-makers 
who gather  da ta  and evaluat ions aimed at reducing the risk of fau l ty  decision- 
making.  A program manager  gathers,  monitors and directs the human  and 
technical ,  and economic resources needed for the development.  Final ly,  the 
technical  designers-builders ac tual ly  construct  and test  the system. In the case 
of commercial software development,  there is considerably more var ia t ion.  The 
development process may be as highly s t ructured as indicated above. On the 
other hand,  commercial software is frequently developed by one or two pro- 
grammers,  working from informal (sometimes non-existent)  requirements 
specifications, and wi thout  clear lines of au thor i ty  for decision-making. As 
development proceeds from highly s t ructured environments  to less s t ruc tured  
ones, the need for formal assurance mechanisms becomes less pronounced. In 
addit ion,  a separate  panel of the present workshop (the "requirements panel") 
identified large systems as the ta rget  for the workshop. Accordingly the panel 
agreed to concentrate  on the Defense software problem. 

The final problem centered around the dichotomy between economic and 
technical  mat ters .  Specifically, the issue to be addressed was whether  or not 
economic l imitat ions and concerns were sufficiently technical  and well-defined to 
war ran t  consideration by the panel. The answer seemed to be a resounding 
"yes". 
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3. A u d i e n c e s  v e r s u s  I s s u e s  

No uniform criteria exist for relating the "Who" to the "About Wha t "  com- 
ponents of assurance. For a given software development  effort, the issues to be 
resolved relate to different audiences as i l lustrated below. 

Issues 

Audience Technical Operational 

Components System Mission Need 

User 

Dec. 

Maker 

Pgm Mgr 

Builder 

< 

< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  > 

< - - -  > • 

< - - -  - >  

> 

The technical issues are those questions tha t  must be addressed to adequately 
assess engineering quality. In hardware,  these issues may involve such criteria 
as machining tolerances. In software the technical issues may question generic 
characteristics such as whether  certain coding s tandards  have been followed or 
specific characteristics such as whether  or not a certain specification has been 
satisfied. Operat ional  issues, on the other hand, are those questions tha t  are 
raised to provide insight into operational  suitabili ty and effectiveness. Typical 
examples of operat ional  issues are the extent to which the system performance 
envelope satisfies mission needs and whether  overall system availabili ty is 
sufficient to ensure completion of mission objectives. 

4. L e v e l s  o f  A s s u r a n c e  

Assurance relates observational or other information (e.g., a correctness 
proof) about software to a set of issues. This relationship is generally esta- 
blished by specifying a property Q tha t  -- when satisfied - resolves the issue. 
Examples of such properties, with respect to a software system S, are the fol- 
lowing: 

o S has branching complexity less than  x 

o S is consistent with specification s ta tement  D, 
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o S achieves an operat ional  reliabili ty of at least R(t) 

o S achieves performance parameter  P 

o S meets user expectations.  

A level o/ assurance represents a degree of confidence t h a t  one of these 
issues has been resolved. Equivalently,  a level of assurance is a degree of 
confidence t h a t  one of the specified properties obtains.  There are three al terna-  
tive definitions t ha t  arise natural ly :  

Definition A: The degree of confidence t ha t  the software behaves as 
intended.  

Definition B: For specified property Q, the degree of confidence t ha t  the 
software satisfies Q. 

Definition C: For specified property Q and person P, the degree of confidence; 
possessed by P tha t  the software satisfies Q. 

All three definitions appear  to be important ,  a l though they  are increasingly less 
t rac tab le  insofar as they  apparen t ly  demand increasingly specific assurances.  

']?he definitions, however, leave open an impor tan t  problem -- one which is, 
on the surface, as difficult as the original: W h a t  is a degree of confidence? 

To give an operat ional ly  meaningful  definition, three different properties Q 
need to be distinguished. Actual ly,  the (single) proper ty  Q, mentioned above, 
resolves into three q ' s  (which we will call Q(I), Q(A), and q(A)) t h a t  are needed 
to provide a sensible answer to a technical  or an operat ional  issue. 

Q(I): This is the ideal or the required property.  

Q(A): This is the actual  property possessed by the system 

q(A): This is the property t ha t  we are able to infer t h a t  S possesses by 
a t t empt ing  to observe (or infer) Q(A). 

The "degree of confidence" mentioned in Definitions A-C is s imply the odds we 
are willing to bet t h a t  the difference between the ideal proper ty  Q(I) and the 
measured proper ty  q(A) is really the difference between the ideal proper ty  and 
the true proper ty  of the system. 

The notion of "bet t ing odds" is an impor tan t  one. It suggests a connection 
between these definitions and economic concepts such as cost versus benefit, 
cost versus risk, and cost-of-error versus level-of-effort. It is also sufficiently 
loosely defined to admit  many  interpreta t ions .  In some circumstances (e.g., 
when there are stochast ic  elements t ha t  can be described or controlled) bet t ing 
odds may, in fact,  be s ta t i s t ica l ly  meaningful probabilities.  In other  cases, bet- 
t ing odds may reflect subjective judgements .  In still others, they  may represent 
ma themat ica l  assessments of val idi ty  or conditional validi ty.  

The "ideal" proper ty  is an impor tan t  aspect of the problem. It may  seen] 
na tu ra l  to factor it out, however, doing so may turn  the problem of assessing 
levels of assurance into an operat ional ly  meaningless problem. Suppose t h a t  
"properties" are really quant i ta t ive  parameters ,  so t h a t  the degree of confidence 
corresponds to the odds t ha t  
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Q(I)-  Q(A) -- Q(I ) -  q(A). 

It may  seem na tura l  to repair  this equation as follows: 

Q(A) -- q(A). 

This doesn' t  always work, since a convincing level of assurance in the first case 
may not be convincing in the second (these paradoxes involving logically 
equivalent properties are well-known in logic and may be found, for example, in 
Hempel 's  essay, cited above). 

Finally,  the issue of "Who" can be incorporated or addressed in these 
definitions as appropriate .  

A summary  conclusion -- maybe an obvious one t ha t  did not  require 
Definitions A-C -- is tha t ,  whatever  we mean by levels of assurance, these levels 
are not to ta l ly  ordered. There will be incomparable levels as well as long and 
short chains. A theory is needed to establish some basic properties of the order- 
ing. 

5. E s t a b l i s h i n g  t h e  O r d e r i n g  o f  L e v e l s  -- A n  A g e n d a  

One approach to providing an ordering of degrees of confidence is to iden- 
t i fy a set of assurance functions, the issues and audience they  address, and the 
extent  to which a given methodology exhaustively implements the function. 
Examples of such functions include the following: 

o find errors 

o demonstra te  operat ional  performance 

o val idate  software against  informal user expectat ions and needs 

o val idate  software against  a s ta tement  of user requirements 

o verify the software against  a given specification 

o val idate  a specification against  informal user expectat ions and needs 

o val idate  software against  a s ta tement  of user requirements 

o verify a specification against  a given (prior) specification 

o exhibit a given stat ic  property of the software 

o ensure adherence to a given development approach 

o certify the software against  some (pre-existing) s t andard  

o demonstra te  the modes and effects of software failure 

For example, verifying the program addresses the correctness proper ty  and is 
primari ly of importance to builders and the program managers.  While a valid 
proof provides high confidence in correctness, the extent  to which test ing pro- 
vides degrees of confidence is a subject  of current research. On the other  hand,  
failure modes and effects analyses are of critical importance to users. Failure 
modes are exhibited by test ing at  levels t ha t  have not really been determined 
with great  precision. Failure modes and effects are, by definition, not exhibited 
by proving so proving can give no confidence in this area. 



A C M  S I G S O F T  S O F T W A R E  E N G I N E E R I N G  N O T E S  vol I I  no 5 Oct  1988 P a g e  78 

NRL Invitational Workshop on Testing and Proving, July, 1986 

Discussion Group Summary: 

S o f t w a r e  E n g i n e e r i n g  I n t e r a c t i o n s  

Chair: John Gannon, Univ. of Maryland 
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Our discussions focussed on the impact of testing/proving considerations on the 
structure of software systems and on other software engineering practices and 
goals. We also tried to assess current practices to determine what kinds of pro- 
perties were likely to be demonstrated using the respective technologies, and 
organizational issues relating to testing/proving. 

It is obvious tha t  good system design makes both testing and proving much 
easier. Program verification benefits both from layers of abstraction and from 
modular decomposition within the layers. In the verification of a hierarchical 
system, we demonstrate tha t  lower-level layers correctly implement higher-level 
layers until a layer is reached that  can be executed on a target machine. The 
series of verifications reduces the complexity of the mapping function between 
states of the implementation layer and those of the highest layer design. 
Within each layer, modularity makes specifications easier to write and keeps 
proofs smaller. More detailed discussions of these issues can be found in [1-4]. 
Testing places smaller demands on system structure than does verification, but 
still benefits from hierarchical and modular decomposition. Although intermedi- 
ate layers in a hierarchical design may not be executable on the target machine, 
they may still be used in symbolic executions. Modularity makes it possible to 
execute a system component over more of its domain than might be exercised 
by an acceptance test, perhaps resulting in more robust behavior when the sys- 
tem is operational. 

We discussed the possibility that  designing for easy testing/proving might nega- 
tively impact other software engineering goals (e.g., ease of change, maintaina- 
bility, etc.), or affect other software engineering practices. Of the goals, we con- 
cluded tha t  only efficiency might suffer. While it is possible tha t  excessive 
layering or modularity imposes run-time overhead, the implemented version of 
the system need not be identical to the verified version. Correctness-preserving 
transformations (e.g., inline expansion of procedures) can be applied to increase 
efficiency. Another issue raised was the possibility tha t  a less efficient design 
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al ternat ive would be selected in order to reduce the difficulty of its proof. We 
felt t ha t  the relationship between tes t ing/proving considerations and software 
engineering practices was mutual ly  beneficial. For example, we discussed how 
rapid prototyping might be used to refine and test  specifications. 

In discussing what  kind of properties were likely to be amenable to 
tes t ing/proving,  we concluded tha t  each type of val idat ion technique had a role 
in the software engineering process. Properties tha t  are defined in terms of 
avoiding enumerable anomalies (e.g., downward flows of information in multi- 
level security models, safety, liveness, etc.) were good candidates for 
verification. More complex properties (e.g., the function computed by a unit  of 
code) could either be tested or proved, but  tha t  both techniques relied on the 
presence of a formal specification for the function. (Even program testers 
agreed on the usefulness of a formal specification in recognizing errors.) Proper- 
ties t ha t  were not generally specified formally, but which could be consistently 
judged by human oracles (e.g., system performance, the behavior of machine 
ari thmetic,  etc.), were more likely to be tested than  proved. One final category 
of properties emerged under the title user expectations" (things t ha t  are incon- 
sistently judged by human oracles such as user-friendliness"). Neither  valida- 
t ion technique seems to be much help as long as these properties remain so ill 
defined. 

Finally,  we considered organizat ional  issues relating to the use of 
tes t ing/proving techniques. Current ly industry makes little use of either 
verification or the more formal aspects of testing (e.g., test oracles, symbolic 
execution, or even test  coverage metrics). This s i tuat ion exists because budgets 
are set for producing products ra ther  than  for developing tools or t ra ining per- 
sonnel to use new methods or tools. A manager  seeking to produce a system 
within time and money constraints  is unlikely to dilute team effort producing 
new tools, documenting tools his team developed for their  own project,  or train- 
ing his team to use a new method or tool. Only changes in the economic basis 
for decision making (perhaps in response to technical  breakthroughs in com- 
ponent  reusability) are likely to bring changes in this behavior. Software reuse 
can raise both product  quality and programmer productivity,  making 
verification viable. We discussed the central role tha t  formal specifications are 
likely to play in software reuse, increasing programmers '  confidence in what  
software components do and decreasing their  eagerness to rewrite a piece of 
software they cannot  understand.  We also recognized tha t  inadequate 
mathemat ica l  educat ion is likely to make programmers reluctant  to t ry  either 
verification or testing based on formal specifications. 
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I must begin this  report by apologizing to the other  members of this group 
for not being able to a t t end  the session which I was supposed to chair! I was 
not informed of the s i tuat ion t ha t  caused my absence until  the afternoon before 
the session was scheduled to be held. I, therefore, would like to t h a n k  and 
commend all of the par t ic ipants  in this session for their  efforts to address 
some very difficult issues and to come forward with  some constructive ideas. 

One of my current interests is discovering wha t  kind of hard,  objective 
justifications,  if any, can be made for the cost-effectiveness of formal 
verification. To put  it in commercial terms, how do I persuade a manager  t ha t  
verification might reduce some impor tant  costs? The search for an answer to 
t ha t  question has lead me to pose the similar question for testing. I have 
found this to be a surprisingly difficult and complex set of issues to come to 
grips with.  So, my ulterior motive in agreeing to chair this session was to 
bring some of the diverse expertise of this very capable group of people to 
bear on these difficult issues. I deeply regret t ha t  I was unable to parti-  
cipate in the discussion of these impor tant  issues. 

I especially want  to t hank  Mark  Cornwell for the notes and slides t ha t  
he prepared for the workshop wrap-up session on Fr iday.  The summary  t ha t  is 
given below is primari ly my in terpre ta t ion and some slight elaborat ion of 
Mark 's  slides. 

1. M a j o r  Issues 

The broad issue that was addressed by the session was the relative 
cost-effectiveness of testing and proving. To provide some structure for the 
discussion, several major questions were posed and discussed. 

- Which approach is more cost effective in the long run? 
- What are the components of cost? 
- What determines cost effectiveness? 
- How can it be assessed? 

These questions led naturally to an attempt to formulate some working 
definitions. W h a t  is "testing?" W h a t  is "proving?" No definitive answers were 
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provided because the boundaries between the two are not sharply  defined. 
Generally,  tes t ing was character ized as "back-end work" t ha t  is done after  a 
product is produced, whereas proving was character ized as "front-end work" 
which is done before a product is produced. It generally was agreed t h a t  there 
is a wide spectrum of rigor t ha t  can be applied in both test ing and proving. 

2 .  C o s t - B e n e f i t  A n a l y s i s  

The session a t t empted  to take a cost-benefit approach to comparing test- 
ing and proving. Several kinds of cost components were enumerated.  The 
idea was t ha t  it might be possible to est imate the cost of each component 
for both test ing and proving, to enumerate  the various benefits of these com- 
ponents,  and to est imate their  value. The in tent  was t ha t  such an analysis  of 
components might provide at  least one consistent basis for comparing test ing 
and proving. As the following sections show, the group got s t a r t ed  toward 
this goal, but  fell well short  of completion. 

2 . 1 .  C o s t  C o m p o n e n t s  

']?he following components of software cost were identified. In most 
cases, they  apply both to test ing and to proving. 

- Development of formal or informal specifications. 
- Run time to perform test ing and proving. 
- Da t a  reduction. 
- Eva lua t ion  of test  results. 
- Detect ing errors. 
- Fixing errors. There have been some studies t h a t  indicate t h a t  the cost 

to fix an error roughly doubles as it goes undetected at  each successive 
stage of software development.  The following set of numbers  are 
typical  of the kinds of cost increases frequently quoted [Stuhl 85]: 

Requirements  $349 
Design $876 
Code & Unit  Test $1750 
Test  & Integra t ion $12782 

The way tha t  these numbers are interpreted is t ha t  if a requirements error 
is detected during the requirements phase of a project,  it costs about  
$349 to fix it, whereas if t ha t  same error is not detected until  test  
and in tegra t ion time, the cost is over $12,000. These numbers  frequently 
are used to support  the argument  t ha t  early error detect ion reduces 
costs (and, therefore, you should hire an IV&V firm to save you money)! 
- Development of support  tools such as the following: 

* Simulators to provide test  data .  
* Test  analysis support  tools. 
* Mechanical  proof support  tools. 

Most of these cost components have both a human  labor cost and also a 
cost of computing resources. The price of the human  labor may vary  
considerably depending on the capabili t ies required for the various tasks.  
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2 .2 .  B e n e f i t  C o m p o n e n t s  

The following components of benefits of proving and 
identified. 

- Increase in Mean Time Between Failures (MTBF). 
- Reduced cost of errors to client. 
- Political benefit to producer of no errors. 
- Reduct ion in risk to client. 
- Reduct ion in maintenance  costs. 

test ing also were 

3. S t a t e  o f  t h e  A r t  

Some discussion was devoted to exploring the s tate  of the art in testing 
and proving. 

3.1 .  T o d a y  

At present,  it is often programmatic issues tha t  drive choices of testing or 
verification or proof methodologies. 

Sometimes, the use of certain methodologies are manda ted .  (As one 
member  of the session commented to me on Friday, "If the government  
manda tes  a methodology, it's cost-effective!") The A1 level of certifying 
secure operat ing systems is a case in point. These certifications manda te  the 
use of formal top level specifications and proofs about those specifications. 

Often, the choices are driven by management  considerations. Assurance 
is a subjective thing, in tha t  often what  kind of assurance is provided depends 
very much on who it is being provided to. Unfortunately,  the management  
tha t  needs to be assured often is not well informed about various assurance 
techniques and, therefore, is not able to interpret  the assurance evidence prop- 
erly. Wha t  probably is needed is a variety of worked out examples of various 
projects tha t  applying testing and proving techniques. These examples would 
enable managers  and practi t ioners alike to see the effectiveness of various 
methods on part icular  examples. 

The only advice tha t  the group has to offer in this area is tha t ,  in making 
these decisions, it is necessary to weigh factors other  than  mathemat ica l  
verification or testing. It is important  to consider the interact ion of various 
techniques and to define and approach assurance as early as possible in the 
project. 

3.2 .  T o m o r r o w  

Several trends were identified tha t  the group believed will affect the cost 
effectiveness of both testing and verification. 

- N a r r o w i n g  the gap between formal specification languages and 
programming languages. 
- Evolution of declarative languages. 
- Machine architectures to support declarative languages. 
- Networks, multiple processor architectures tha t  support  continuous 

testing. 
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Possible widespread acceptance of a s tandard  formal specification 
language. 

4 .  C o s t - E f f e c t i v e n e s s  F a c t o r s  

The following issues were identified as affecting the cost effectiveness of 
system assurance. 

- Criticality of properties assured. 
- Isolation of properties in a small amount  of code or spec. 
- Formalizabil i ty of properties. 
- Size of the system. 
-Usefulness  of a test  result. 
- Provabil i ty of a property. 

It was observed tha t  cost effectiveness is not a question tha t  can be answered 
in isolation. It depends greatly on the characteristics of a specific problem. 

5 .  R e c o m m e n d a t i o n  

As a final recommendat ion,  the part ic ipants  in the session suggested a 
handbook of various assurance techniques. This handbook would include 
the following items: 

- Definitions of terminology. 
- Enumera t ion  of techniques. 
- Wha t  kind of assurance they give. 
- W h a t  benefits they provide. 
- W h a t  they cost. 

References to example efforts. 

Such a handbook could provide a common ground for both the technical  and 
the customer community.  
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This Workshop has produced many interesting and useful ideas 
about software proving and testing. In fact, I believe it 
is particularly important to consider proving and testing 
together. It is not a question of proving or testing. 
~Neither is sufficient. But the combination of proving and 
testing is the best idea on the software horizon today. 

Testing has been a fixture in software from its inception. 
Dijkstra has pointed out that testing shows the presence of 
errors but not their absence. But statistical testing from 
a population of software usage scenarios can do better, by 
providing scientific, objective evidence of software 
reliability. 

Proving is of more recent origin. Dijkstra's motivation in 
structured programming was to reduce the lengths of proofs. 
Variable free proof procedures that scale up to large 
programs, but with increased individual fallibility, can be 
used with additional checks and balances to decrease team 
fallibility to the point of eliminating the need for 
software debugging prior to system testing. 

Formality is critical for both proving and testing. But 
formality should be defined at the semantic level, not the 
syntax level, with the goal of repeatability in human 
interpretation rather than this or that representation. 
example, a formal specification for a data abstraction 
should be defined by a mathematical relation, however 
represented, plus a probability measure on the iterated 
product sets of its domain, to define usage scenarios. 

For 

The combination of software proving and testing allows the 
definition of software development under statistical quality 
control. The short history of software would seem to 
indicate that software development, a creative process, and 
statistical quality control, an objective process, are 
contradictions in terms. However, with formal 
specifications that include probability measures on usage 
scenarios, the statistical quality control process can be 
imposed literally on software development. 
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