
F01IU]!
Arguing Against Certification
I am writing to comment on Peter
G. Neumann's column, "Certifying
Professionals" (Feb. 1991, p. 130). I
am an academic and thus "immune
from the problem," as J.H. White-
house is quoted to say, yet I feel
strongly about the issue.

I believe that certification is a bad
idea and hope that it never happens
to tile software industry. The
hodgepodge of arguments for cer-
tification contains such contradic-
tory statements as "Nurses, physi-
cians, pilots, civil engineers (even
hair stylists) are licensed" and on
the other hand that certification is
desirable "for staff who hold key
positions of responsibility on proj-
ects that have significance for soci-
ety." Which one is it, certification
for every coder, or for the top hon-
chos only?

The arguments for certification
are unconvincing.
(1) Other professions do it.

Some do (lawyers, hair dress-
ers), some don' t (business man-
agers, research chemists, politi-
cians)

(2) Professional errors could cost society
dearly.
Indeed they could. However, in
a project of any size such errors
can rarely be attributed to a sin-
gle incompetent individual.
Software design and program-
ming are error-prone activities.
Who should have their certifi-
cation stripped off in case of a
fatal flaw? The coder who
wrote that function (if it was a
single one)? The manager of
the debugging team? The proj-
ect leader?

The arguments against certifica-

R E A D E R S
R E A C T T O

C O L U M N I S T S "
C O M M E N T S

tion are much stronger.
(1) Certification is monopolistic, pro-

tects mediocrity and shields incom-
petence.
The best example is the legal
profession.

(2) The field of software engineering is
too immature. Certification would
freeze (or at least gel) today's unsat-
isfactory state of the art.
There are few accepted stan-
dards for analysis, design and
programming. Sure, gotos are
bad, but what else? Is object-
orientation good? Should it be
required? How will the next
advance be absorbed? A col-

league of mine in the civil engi-
neering department groans
about the inability of his profes-
sion to switch to faster, more
reliable computerized tech-
niques for earthquake safety
design because they do not con-
form to existing construction
codes.

I am glad that Communications is
covering this important issue.

Cay Horstmann
School of Science

San Jose State University
San Jose, CA 95192

You Can Always Tell
a H a c k e r . . .
In the article "The United States vs.
Craig Neidorf," (Mar. 1991, p. 24)
Dorothy E. Denning suggests less-
ening the punishment given for
accessing computer systems without
authorization. Whereas this may
seem like a good idea at first, how
will this help to solve the problem
of hacking? It simply will not.
Hackers will continue to log onto
systems where they should not be
simply for the thrill of doing so,
and for the fun of toying with oth-
ers.

In fact, most small-time hackers
probably do not even realize the
legal implications of their med-
dling. For them, changing the law
will not affect them because they
will not even realize it has been
changed. What we need is to get the
message out to young hackers tell-
ing them what may happen if they
continue their illegal activities. We
must also make potential hackers
aware of the law, since reducing the

C O M M U N I C A T I O N S OF THE AOM/October 1991/Vo1.34, No.10 13

number o f potential hackers will
reduce the risk to us all.

Jon Gettler
9260 S. 94th St.

Franklin, WI 53132

"Bugs" and a Balanced
Tedium
I found what was said between the
lines of the Practical P rogrammer
column, "Testing Made Palatable"
(May 1991, pp. 25-29) disconcert-
ing. In relat ing the experiences of
his development group, Marc Ret-
tig provides the attentive reader
with insight into one of the most
significant causes of the "software
crisis." The re is a definite lack of a
professional ethic behind our view
and discussion o f our work within
the software "profession." I f ind
two notable examples in Rettig's
column: the problem of "bug" and
the response to tedium.

I look forward to the day when I
can read a copy of Communications
cover to cover and never catch sight
of the word "bug" as a second-rate
synonym for e r ro r or defect. For
the last year, I have followed
Edsger W. Dijkstra's exhortat ion to
t rade in "bug" for the more honest
"error ." Doing so has had the pro-
found effect that he predicted:
"While before, a p rogram with only
one bug used to be 'almost correct, '
af terwards a p rogram with an e r ror
is jus t 'wrong' . . . " [3]

I cannot disagree with Rettig that
we must f ind ways to increase the
effectiveness of testing as a means
to assuring that we have created
defect-free software. I am, how-
ever, concerned with the view (and
perhaps the reality) that a signifi-
cant hurdle to this goal is the te-
d ium of software testing.

Should we strive for a "pleasant
balance between r igor and te-
dium?" We may need to f ind a
practical balance between rigor,
schedule constraints, and reliability
requirements. Does it mat ter
whether testing is "no fun" or can
be "great fun?"

How do our perceptions of our
work implied by Rettig's column

W o u l d w e
p l a c e

o u r s e l v e s
i n t h e c a r e o f a
m e d i c a l c l i n i c

t h a t u s e s
c o n t e s t s

t o e n c o u r a g e
t h e s t a f f

w i t h t h e i r
d i a g n o s t i c

w o r k ?

compare with o ther professions?
Would we place ourselves in the
care o f a medical clinic that uses
contests to encourage the staff with
their diagnostic work?

My purpose is not to cast asper-
sions upon Rettig's professionalism
and that of his colleagues. Rather, I
assert that the very vocabulary we
use significantly colors our profes-
sionalism. Until we change our per-
ceptions o f our work and the way
we describe it, there is little hope
that we can become professional (as
the rest of the world unders tands
that term) as well as practical pro-
grammers. The fact that Rettig
quotes David Parnas 's concern
about the lack of professionalism
among software engineers and
misses the possible application o f
that concern to his own words is an
indication of how deep-seated the
problem is.

Corey Huber
Fraser Consulting, Inc.

1 Liberty St.
Cazenovia, NY 13035

Response
Huber makes interest ing points,
and I appreciate his diplomacy. We
agree on the problem of profes-
sional discipline in the software
community. We address the prob-
lem from different points of view.

He is concerned about the notion
that tedium is the enemy of rigor.

In my experience, this is a fact o f
life. (A "problem" is something you
can hope to change. A "fact of life"
is something you must learn to live
with.) In my experience, most pro-
g rammers work best dur ing the
rewarding problem-solving and
coding phases o f a project. When it
is time for tedious testing and
mindless paperwork, their enthusi-
asm dwindles, and with it their ef-
fectiveness. Sermons about r igor
make them feel guilty, but rarely
affect work habits. This is not scan-
dalous irresponsibility, it is jus t
human nature.

So it really does mat ter whether
testing is "no fun" or can be "great
fun." It affects the quality of our
software. People need to have fun,
and they need the recognit ion and
suppor t of their peers. A person
can focus only so long on a detailed,
tedious task.

Then it is t ime for a p ing-pong
game, or r igorous at tention to de-
tail will degrade to mindless staring
at the screen. Gerald Weinberg dis-
cusses this and many o ther factors
in his Psychology of Computer Pro-
gramming [7] (see especially Chapter
10, "Motivation, Training, and
Experience"). And recognit ion o f
personali ty needs is one o f the rea-
sons that recent approaches to team
development , like Structured Open
Teams, are so effective.

Instead o f working against
human personali ty traits to enforce
a reluctant discipline, let us recog-
nize their role in software quality
and use them to our advantage. Let
us develop tools and management
techniques that encourage people
to develop quality software. Of
course, this does not take us all the
w a y - - s o m e things are jus t plain
hard work, and professionals must
be p repa red to apply themselves.

So, to answer one of Huber ' s
questions, the knowledge that a
medical clinic uses contests to en-
courage their diagnostic staff would
be a mark in their favor, in my
opinion. I would expect them to be
enthusiastic about their work. I f
they have a p ing-pong table in the

14 October 1991/VoL34, NoAO/COMMUNICATIONS OF THE ACM

lab, I will trust them with my very
bowels.

When it comes to "defect,"
"error," or "bug," I guess I am
happy ei ther way. But I would like
to make a point about p rogram-
ming in practice as a comment on
Huber 's concern.

Al though most p rogrammers
would say their ideal is to produce
"defect-free" software, the real goal
of most projects is to produce
something that works to the cus-
tomer 's satisfaction, on time and
under budget. For mission-critical
and most commercial software, "to
the customer's satisfaction" means
"defect-free." But for some large
percentage of projects it means
"with reasonable efficiency and
without major error" ("major"
being an admit tedly ambiguous
word).

Most projects keep a "bug list" on
which defects are given a severity
rating. A misspelled word in an
e r ror message is given low severity,
incorrect results would be mortally
severe. For the majority of projects,
the large cost and delay of remov-
ing every last item from the bug list
is not just i f ied by the customer's
demands.

Professional p rogrammers will
be able to produce defect-free soft-
ware when it is called for. They will
also be able to de termine when it is
not called for, p roper ly priorit ize
defects, and deliver software that
meets the customer 's need, on
schedule and within the budget .

Universities and organizations
like the ACM are trying hard to fos-
ter the atti tudes and habits of engi-
neer ing discipline in the software
community. We are all better off
for their efforts. Out in the world
of comput ing practice, Huber and I
are recognizing some hard facts of
life, and learning to live with them.

Marc Rettig
Summer Institute of Linguistics

7500 W. Camp Wisdom Rd.
Dallas, TX 75236

Defining Formalism
In his March editorial [1] and an-

w e b e l i e v e
t h a t t h e
p r o b l e m

i s n o t
t h a t

m e t h o d s a r e
f o r m a l

b u t t h a t
t h e y
h a v e
b e e n

m i s u s e d .
other column [2], Peter Denning
relates problems in U.S. manage-
ment styles and in software devel-
opment , and concludes that these
problems are attributable to exces-
sive formality on both areas. He
believes we must go "beyond for-
mality." Unfortunately, the gist of
his writings suggests not so much
that we should go beyond formal-
ity, but that we should discard it.

We agree that the development
of useful software requires discov-
er ing what users really need. Good
communicat ion between users and
designers is essential to such discov-
eries and need not be formal. But
formalism permits us to communi-
cate user requirements precisely in
a way subject to r igorous analysis,
and we are concerned that some
may in terpre t Denning's article as a
justification for discarding one of
the few effective methods we have
for managing the software develop-
ment process.

Many of the problems Denning
identifies are real, such as the fail-
ure of software developers to focus
on how software can best suppor t
effective human performance of a
task. However, his at tr ibution of
these problems to excessive use o f
formal methods in both manage-
ment and software development is
dubious. The fact is that software
development practice today makes

little use of formalism. Indeed, al-
though Denning defines "manage-
ment," he never defines jus t what
he means by "formal" or "formal
methods." Characterizing Taylor 's
management techniques first as
"scientific" and then as "formal,"
Denning next shifts the discussion
to the use o f formal specifications
and formal methods in software
development , implying that the
failures (as he sees them) of formal-
ism in one domain carry over to the
other. Without a definit ion of "for-
mal" it is ha rd to evalute this argu-
ment. Here and throughout his ar-
ticles he makes "formal" into what
some would call an accordian w o r d - -
i.e., a word whose meaning can be
expanded and contracted to suit
the author 's tune.

We believe that the problem is
not that methods are formal (i.e.,
there is an effective procedure for
de termining whether they have
been correctly applied) but that
they have been misused. I f a corpo-
ration creates for itself a structure
that prevents the internal commu-
nications necessary for it to com-
pete, it will fail, but one cannot con-
clude f rom this that a structureless
corporat ion would do better. Nor
can we conclude that because soft-
ware specifiers have difficulty an-
ticipating how a system may be used
and what changes may be required
after users gain experience with it
that they should forget about speci-
fying it and simply build (somehow)
what the user wants.

Denning questions whether
"what people do" is formalizable at
all. I t may indeed be impractical to
specify some human behaviors
(particularly those we do not thor-
oughly unders tand) formally, but
anything we can p rogram a com-
puter to do must, of necessity, be
formalizable. I f there is no more
abstract formalization, the p rogram
itself provides one. We view with
concern the an th ropomorph ic view
of computers that is all too common
in popular writing.

Denning does express the legiti-
mate concern that formalism makes

COMMUNICATIONS OF THE AOM/Octobcr 1991/Vol.34, No.10 lS

software builders unresponsive.
One concern is that once we have
gone through the effort of formal-
izing system requirements, we are
unwilling to change them. How-
ever, we believe that introducing
formalism per se into software engi-
neering is not what leads to unre-
sponsiveness; rather, it is once
again the misuse o f formalism.
Methods do exist for developing
software that can be easily adapted
to changed requirements [6]. Such
methods couple formalism with in-
formation hiding and abstract spec-
ifications (i.e., specifications that
postpone premature design deci-
sions). Applying them to software
development produces specifica-
tions that can be changed without
undue ,effort. In fact, the type of
precise, abstract specifications re-
quired by these methods are best
written in a formal language that
eliminates the ambiguity and im-
plememation-dependent artifacts
that plague more informal specifi-
cations.

In closing, Denning encourages
us to learn more about user-
centered design [1], and he en-
dorses the notion of basing soft-
ware designs on linguistic analyses
o f work [2]. Describing an example,
the Coordinator [5], he notes that
its design is simple because "it is
based on an interpretation in which
all networks of conversations for
action are composed from a base set
of four recurrent conversational
moves." Dobson and McDermid
have taken a similar approach to
discovering appropriate character-
izations of system security proper-
ties [4]. Both o f these examples
strike us not as "beyond formalism"
but as precisely the appropriate
application o f formalism to capture
essential structure.

Carl Landwehr, John McLean, and
Constance Heitmeyer

Naval Research Laboratory
Washington, D.C., 20375-5000

Response
The thrnst of my argument is this:
Software development is a manage-

ment process and suffers f rom the
same rigidity that organizations are
all too often. At best, formal meth-
ods fail to address rigidity because
they focus exclusively on the com-
puter system; at worst, they con-
tribute to the problem because o f
the large investment o f resources to
create or change the formal specifi-
cation. Therefore, we need to sup-
plement our formal processes with
new ones that explicitly take the
broader context into account, adapt
to change, and promote communi-
cation among people in the organi-
zation.

Landwehr, McLean and Heit-
meyer worry that my words "be-
yond formalism" will be construed
as "instead of formalism." I do not
advocate abolishing formal meth-
ods. In the domain of machines
built as systems of interacting com-
ponents, a formal, rule-based ap-
proach to describing the function
o f each component and the exact
ways that they interact is essential to
the design. Most technologies today
could not have been built without
this way of thinking about systems.

The problem arises when we as-
sume that rule-based thinking will
be effective in all domains, such as
the domain of human interactions
in organizations, and when we for-
get that designers must respond to
changes in organizations as well as
changes in technology. For me,
moving "beyond formalism" does
not mean discarding formalism in
the domain of machines, but add-
ing a new domain of awareness of
the human organizations in which
the machines will work.

Peter J. Denning
Computer Science

George Mason University
Fairfax, VA 22030

APL 92
I was very pleased to see mention of
the forthcoming APL92 conference
in the June 1991 President's Letter,
nevertheless I feel that the piece
does not fully reflect the relevance

of this event to ACM's members,
nor fully accredit the efforts which
have led to this agreement.

APL92 will be the latest in the
series o f conferences on APL which
have been running annually since
1979 and less regularly for several
years earlier. It is the annual inter-
national conference of ACM's
SIGAPL, which is making a very
significant contribution o f personal
and financial energy. The APL
conferences have alternated be-
tween the Western and Eastern
hemispheres very successfully. Seri-
ous discussion about Leningrad as
the venue for APL92 began at the
APL90 conference last year, which
was the first occasion on which So-
viet delegates had been able to at-
tend one of these conferences.

The origins o f the APL92 initia-
tive stretch back a very long way, at
least to a visit following the APL84
conference held in Helsinki, Fin-
land, by Ken Iverson (originator of
the APL notation) and Robert Ber-
necky (current vicechair of ACM
SIGAPL). This visit was instru-
mental in introducing APL to the
Soviet computing scene, forging
links which continue to this day be-
tween A C M SIGAPL, the Finnish
APL Association and the Soviet
groups in both Leningrad and Mos-
cow. Much of the credit for arrang-
ing this pioneering visit must be
given to Timo Seppala of the Finn-
ish APL Association; among the
venues at which talks were given
were the Moscow Academy of Sci-
ences and the Tallin, Estonia, Insti-
tute of Cybernetics.

SOVAPL is noteworthy also in
being the first affiliation of a na-
tional group as an ACM local SIG.
It is also worth mentioning that
ACM's NY/SIGAPL local group
sponsors two Soviet members of
ACM and that APL91 in conjunc-
tion with ACM SIGAPL have ar-
ranged support of four Soviet at-
tendees at APL91 (In Palo Alto,
Calif.) through individual, corpo-
rate and local group contributions.

As you see, APL92 is an event
which forms part of a continuum of

16 October 1991/Vol.34, No.10/COMMUNICATIONS OF THE A C M

effort both by ACM's active
SIGAPL membership and by asso-
ciated groups worldwide. I feel that
it is important that this perspective
be given to the rest o f ACM's mem-
bership.

Dick Bowman
2 Dean Gardens

London E17 3QP
England

References
1. Denning, P.J. Technology or man-

agement? Commun. ACM 34, 3
(March, 1991), 11-12.

2. Denning, P.J. Beyond formalism.
American Scientist 79, 1 (Jan-Feb,
1991), 8-10.

3. Dijkstra, E.W. On the cruelty of
really teaching computing science,
Commun. ACM, 32, 12 (Dec. 1989),
1398-1404.

4. Dobson, J.E. and McDermid J. Secu-
rity models and enterprise models.
Database Security, II: Status and Pros-
pects, C.E. Landwehr, ed., North-
Holland, 1989, pp. 1-40.

5. Flores, F., Graves, M., Hartfield, B.,
and Winograd, T. Computer Systems
and the design of organizational in-
teraction. ACM Trans. on Office Infor-
mation Systems 6, 2 (April 1988) 153-
172.

6. Parnas, D.L. Software engineering
principles. INFOR Canadian Journal
of Operations Research and Information
Processing22, 4 (Nov. 1984) 303-316.

7. Weinberg, G. The Psychology of Com-
puter Programming. Van Nostrand
Reinhold, NY 1971.

Trojan horses, hackers, file corruption, worms,
natural disasters - just when you think you've done
everything to protect your computer resources, the
attack begins.

But don' t despair. You can defend your
computer network from unauthorized access and
disruption with the new techniques you'll learn from
The Computer Security Seminar Series. The
Computer Security Seminar Series is sponsored by
ACM/SIGSAC, ADAPSO, American Express,
Computerworld and Ernst & Young in preparation for
Computer Security Day on December 2.

The program costs
only $195 ($175 for ACM
and A D A P S O members),
including presentation mate-
rials, books and a luncheon.
That's a small price to pay to
avoid some very expensive
problems. But registration is
limited. So, call today for
registration details.

THE
COMPUTER
SECURITY
SEMINAR

SERIES

800-524-4O23
(In Maryland, 301-662-8087)

The Seminar will be presented in these 12 cities:
10/8 Phoenix 10/29 Chicago
10/21 Atlanta 10/30 Minneapolis
10/22 Los Angeles 11/4 Houston
10/25 Detroit 11/6 Philadelphia

11/7 Boston
11/8 New York
11/15 San Francisco
11/18 Washington De

