
TOWARD A COMPREHENSIVE INFOSEC CERTIFICATION
METHODOLOGY �

Charles N. Payne, Judith N. Froscher and Carl E. Landwehr
Center for High Assurance Computing Systems

Naval Research Laboratory
Washington, D.C. 20375–5337

Abstract

Accreditors want to know what vulnerabilities will exist
if they decide to turn on a system. TCSEC evaluations ad-
dress products, not systems. Not only the hardware and
software of a system are of concern; the accreditor needs
to view these components in relation to the environment
in which they operate and in relation to the system’s mis-
sion and the threats to it. This paper proposes an informal
but comprehensive certification approach that can pro-
vide the accreditor with the necessary information. First,
we discuss the identification of assumptions and assertions
that reflect system INFOSEC requirements. Second, we
propose the definition of an assurance strategy to integrate
security engineering and system engineering. The assur-
ance strategy initally documents the set of assumptions
and assertionsderived from the requirements. It is elabo-
rated and refined throughout the development, yielding
the assurance argument, delivered with the system, which
provides the primary technical basis for the certification
decision. With the assurance strategy in place, certifi-
cation of the trusted system can become an audit of the
development process.
Keywords: Certification, Trusted Systems, INFOSEC,
Software Engineering

INTRODUCTION

Computer security certification is the assessment that the
computer hardware and software is trustworthy.1 It sup-

�In proceedings of the 16th National Computer Security Conference,
Baltimore MD, Sept. 20 – 23, 1993, NCSC/NIST, pp. 165–172.

1The computer is trusted if we rely on it for security enforcement. It
is trustworthy if that reliance is justified technically. A computer may
be trusted even though it is not trustworthy, because the Designated
Approving Authority (DAA) may permit its use despite known weak-
nesses.

ports the accreditation decision to allow the computer to
process classified information in an operational environ-
ment.

Trusted product evaluation is the computer security
certification of the product against the criteria of the
Trusted Computer System Evaluation Criteria (TCSEC)
[1]. Trusted system certification2, on the other hand, com-
prises several technical and procedural certifications, in-
cluding a technical computer security certification. The
outcome of the trusted system certification influences the
criteria for other certifications, such as administrative
security and TEMPEST requirements. If the protection
features of the system are deficient in any way, other pro-
tection measures must be used to protect the information
maintained by the system.

While the security feature requirements of the TC-
SEC are targeted primarily at “information process-
ing systems employing general–purpose operating sys-
tems that are distinct from the application programs be-
ing supported” (i.e., trusted products), the assurance
requirements extend “to the full range of computing
environments”[1, p. 2].

According to the TCSEC, both trusted products can be
evaluated and trusted systems can be certified against its
criteria. However, the evaluation approach that is used
for trusted products does not satisfy the needs of an ac-
creditor for a trusted system. In particular, the approach
does not identify the risks of using the system in its op-
erational environment. Accreditors want to know what
vulnerabilities will exist if they turn on the system. A
better approach is needed for certifying trusted systems.
This paper proposes an informal but comprehensive ap-
proach that can be used by project managers, designers,
and implementors of a system and can provide the ac-
creditor with the risks of using the system.

We want to clarify our use of the terms trusted product

2In the TCSEC[1], this is called a certification evaluation.

and trusted system. We have adopted the definitions of
product and system from the European community’s In-
formation Technology Security Evaluation Criteria (IT-
SEC) [2]. According to the ITSEC, a system is a specific
installation “with a particular purpose and a known op-
erational environment”. A product, on the other hand, is
“a hardware and/or software package that can be bought
off the shelf and incorporated into a variety of systems”.
A product or system is trusted if we rely on it for some
critical purpose, such as (in the present context) security
enforcement.

The characteristics and requirements of a trusted sys-
tem’s end–users and the threats to a trusted system’s
security can be determined with some certainty. The
security requirements that it must enforce derive from
national security policy. If a trusted system is based on
an evaluated product, the person deploying the trusted
system must ensure that the assumptions of the prod-
uct are valid for the operating environment. It may be
necessary to develop additional trusted code to enforce
environment–specific security requirements.

The computer security certification of a trusted sys-
tem can be based on the same criteria as the evaluation
of a trusted product. But the system’s certification may
require more resources than the product’s evaluation, be-
cause the system’ssecurity requirements are based on the
known operational environment and so are more com-
prehensive than those of the product.

In the following sections, we discuss why the evalu-
ation approach for trusted products does not scale up
for trusted systems. Then we identify our objectives for
trusted system certification and describe how the devel-
opment process must be improved to support these ob-
jectives:

� adopt the accreditor’s perspective and identify the
system INFOSEC policy,

� base the development (and consequently the cer-
tification) on trade–offs between assumptions and
assertions, and

� define an assurance strategy to motivate the develop-
ment process.

The assurance strategy documents the assertions that
must be true as the result of design decisions, and iden-
tifies the methods used to demonstrate the validity of
each assertion for the system. Finally, we propose that
with the assurance strategy in place, certification of the
trusted system can become an audit of the development
process.

Plan next
phases

Determine
Objectives,
Alternatives,
Constraints

Evaluate
Alternatives;
Identify and
resolve risks

Develop and
verify

Detailed Design a
nd

 T
es

tin
g

Software
Des

ig
nRequir

em
en

ts

Prototyping

Risk

Analysis

Integration and Test Plan

D
evelopment Plan

Cono
p

Commitment

Partition

Cumulative Cost

Figure 1: Boehm’s spiral model

WHY THE PRODUCT
EVALUATION APPROACH DOES

NOT WORK FOR SYSTEMS

Boehm [3] defined a software process model that views
the software process as an iteration through four phases:
planning, risk identification, risk resolution and devel-
opment. In this model (see Fig. 1), a project begins its
life in the center and follows a spiral trajectory outwards:
distance from the origin represents cumulative project
cost, and angular displacement corresponds to the cur-
rent project phase. We will use this model to illustrate the
two ways described previously ([4]) for how the product
evaluation approach can be applied to systems. Later, we
will use it to illustrate our proposed system certification
approach.

The NCSC’s product evaluation approach provides se-
curity engineering expertise to the developer during the
product’s construction (Vendor Assistance and Design
Analysis Phases) and then assigns an evaluation team to
assess the completed product and documentation (For-
mal Evaluation). If we apply this approach to a system,
as illustrated in Figure 2, security engineering support
would be provided throughout the spiral, but certifica-
tion would begin only after system delivery. The certifi-
cation team must be isolated from the security engineer-
ing support effort in order to preserve the independence
of the certification.

Although this process is likely to deliver a system, its
certification may be quite protracted, because disagree-

System Delivery

= Security Engineering
 Expertise

= Evaluation Activity

= Certification Milestone

Figure 2: Certification after delivery

ments between the security engineers and the certifica-
tion team may require redevelopment of portions of the
system. A product developer can accept this lengthy
process, because the product can eventually be sold to
many customers, but a system is often built for a single
customer. The customer cannot tolerate lengthy delays
between the delivery and operational use of the system,
nor can the developer redevelop the system without fur-
ther funding. The accreditor is left in the uncomfortable
position of permitting the uncertified system to oper-
ate, accepting unevaluated risks, or denying the user a
needed capability. For these reasons, delaying the start
of system certification activities until after the system is
completed seems impractical.

An alternative approach is illustrated in Figure 3. Here,
security certification is structured as an independent ver-
ification and validation process that reviews the devel-
opment at each contractual milestone. The security engi-
neering support is eliminated, but the certification team’s
review of the deliverable provides feedback to the devel-
oper and the customer. If certification evidence provided
at a particular milestone is inadequate, the developer
must remedy the deficiencies before proceeding. Certifi-
cation still does not occur until after the system is deliv-
ered, but the delay between system delivery and system
certification should be much reduced from the previous
approach. If the systemis delivered, it should be certified

System Delivery

= Evaluation Activity

= Certification Milestone

Figure 3: Milestone–based certification

promptly.
While this approach eliminates some of the risks of the

previous one, it introduces new ones. Since the TCSEC
describe assurance evidence only for a completed sys-
tem, the certification team is challenged to identify what
certification evidence is needed at each milestone in order
to assure that the resulting system can be certified – and
this activity may recur each time a new system, TCSEC
class, or milestone structure is addressed. The need to
revise deliverables to meet certification requirements at
each milestone may substantially increase system devel-
opment time. Finally, the necessary interaction between
the certification team and system developer can threaten
the independence of the certifiers.

CERTIFICATION OBJECTIVES

We have identified problems with two certification ap-
proaches. These difficulties are related to how trusted
systems are procured and developed. While results from
the certification process should influence programmatic
decisions, programmatic constraints alone should not de-
fine the assessment process. The ideal certification pro-
cess should be applicable to any project, regardless of
lifecycle model and programmatic milestone definition.

Certifiers should view the development as it pro-
gresses. Certification decisions should be made through-
out the system lifecycle — not just when particular pieces

of assurance evidence have been completed. Also, certi-
fication decisions should be based on more than just the
form of the assurance evidence. The certification team
and the developer need a systematic way to reason about
countermeasures, their effectiveness, and the design, de-
velopment, and correctness of the protection mecha-
nisms. In fact, if the developer made trade-off/design de-
cisions based on the same concerns and in the same con-
text as the certifier, the certification process could become
an audit of the development process. The development
process should produce assurance that countermeasures
are effective and correct. The assurance strategy should
drive the development of a trusted system and should be-
gin at system concept with threat identification. We have
now identified objectives for the development process as
well as the certification process.

STEPS TO A SOLUTION

Consider the Accreditor’s View

We believe that to develop a better approach to system
certification, we must consider the accreditor’s perspec-
tive of the system. The accreditor’s primary concern
is protecting classified information with the most cost–
effective controls available. Given a particular mission,
the threats to the successful execution of the mission, and
a system intended to help accomplish it, the accreditor
must first understand the risks of operating the system
and whether there are countermeasures outside the sys-
tem for reducing those risks to an acceptable level. When
all means for reducing risk have been considered, the
residual risk must be weighed against the contribution
of the system to its intended mission, and the decision to
operate it or not must be made.

The accreditor’s view thus includes not only system
hardware and software components but also the peo-
ple who use the system and the administrative measures
that regulate their use. Indeed, physical and person-
nel security measures often are instituted to compensate
for uncertainties or weaknesses in automated systems;
by bringing different security disciplines into a common
framework, we hope to make it easier to formulate ratio-
nal trade-offs among them and to clarify, if not quantify,
the risks a particular set of choices presents when the
system is operated.

Identify the System INFOSEC Policy

Past work in computer security has frequently identified
“security policy” (as in “Formal Security Policy Model”)
with mandatory and discretionary access controls. But
in the context of systems rather than products, this focus
is clearly too narrow.

Sterne [7] recognized this problem and identified three
levels of security policy: security policy objectives, orga-
nizational security policy, and automated security policy.
One of Sterne’s goals was to separate policies applied to
people from those applied to machines. Although we
agree that people must know what’s expected of them
and what they can expect of their machines, we want to
provide a framework that accommodates trade-offs be-
tween human and machine policies. None of the policies
Sterne identified seems to correspond directly to the view
of the accreditor, who often is concerned with the mission
of the system as well as the policies Sterne identified.

For this purpose, we identify the information security
(INFOSEC) policy. As illustrated in Figure 4, the IN-
FOSEC policy is derived from the organizational secu-
rity policy and from other constraints. The automated
security policy, i.e., the trusted system’s security require-
ments, is then derived from the INFOSEC policy and the
operational requirements.

The trade–off analysis begins with the system require-
ments analysis phase of the lifecycle and continues in-
formally throughout system development. The resulting
decisions drive the development, and consequently the
certification, of the trusted system. So that the devel-
oper and the certifier can understand these decisions, we
need a framework in which to capture and document
them. With such a framework, if a trade–off decision
leads to an unworkable design, the developer can better
assess other alternatives, and the developer, customer
and certifier can determine the impact of any changes on
the development and certification of the system.

Think in Terms of Assumptions and Asser-
tions

The framework that we propose for documenting the
trade–off decisions is based on identifying the assump-
tions and assertions that must be true for the system as
a whole to be secure. The notion of identifying assump-
tions and assertions is not new; it derives from earlier
work documented by Landwehr [5] and Froscher [6].
Its use to identify relationships among various security
disciplines, however, has not been advocated previously,
nor has it been suggested as a tool for documenting trade-

Mission

Budget

Organizational
Security Policy

Threats

Available Security
Technology

Operations Concept
Definition

INFOSEC
Policy

Operational
Requirements

Automated Security Policy/
COMPUSEC requirements

COMSEC
Requirements

Personnel Security
Requirements

Security Requirements
Analysis

Other
Requirements

Administrative
Security Requirements

Physical Security
Requirements

TEMPEST
Requirements

Security Policy
Objectives

Figure 4: Introducing the INFOSEC Policy

off decisions taken during system development.
For a given system, assertions are predicates that are

enforced by the system, and assumptions are predicates
that are enforced in the system’s environment. The sys-
tem is unable to enforce the assumptions, but relies upon
them. Together assumptions and assertions represent
what must be true of the system in its environment to
satisfy the security policy. If an assumption or an asser-
tion is false, a security violation may occur.

An example assertion is

A user can only view on a workstation screen infor-
mation for which (s)he is cleared.

This is a relatively high level assertion about system be-
havior, and it might lead to several other, lower level
assertions concerning the access controls implemented
by the operating system, user authentication, and so on.
Taken together, the collection of lower level assertions
should support the argument that the higher level asser-
tion will be enforced.

But suppose that the system developer can only use an
operating system that lacks effective access controls, or
that users cannot be required to authenticate themselves?
In this case, other ways of supporting this assertion must
be found. For example, one might require that:

� All individuals able to view workstation screens are
cleared to the SECRET level, and

� No sources that produce information at a level higher than
SECRET are connected to the system.

From the standpoint of computer security, these last two
predicates are assumptions, for they cannot be enforced
by computer software and hardware. From the stand-
point of physical and personnel security, however, these
are assertions: measures within those security disciplines
should be sufficient to enforce them.3

The purpose of stating the assertions and assumptions
explicitly is to facilitate a systematicanalysis that demon-
strates that all stated security predicates are true for the
system and its environment. The systematic analysis
compares the system’s computer security assumptions
to the assertions of other security disciplines. This ex-
ercise continues for all defined security disciplines. If
assumptions for any discipline are identified that do not
correspond to assertions for some other entity, then these
assumptions represent vulnerabilities in using the system.
If the vulnerabilities result in a risk that is too great, the
trade–off analysis is revisited. This analysis is illustrated
for administrative security, a physical security officer and
computer security in the simple example of Figure 5.

The trade–off continues throughout the design of a
system that must enforce the COMPUSEC requirements.
Assertions and assumptions are determined for individ-
ual hardware and software components, then for mod-
ules, etc. At each new level of specification, assertions
are derived from the previous level. Assumptions are
propagated from higher levels or they may become as-
sertions for this level. In addition, new assumptions may
be introduced.

The assumptions and assertions approach can repre-
sent clearly the effects of decisions made during the de-
velopment cycle and can make explicit the risk of using
the system. It also makes explicit the risk of interconnec-
tivity and allows protection measures to be developed
that promote secure interoperability. Because it captures
the role each part of a system plays in the development of
a countermeasure, this approach allows the maintainer
and the accreditor to reason about the effects of any pro-
posed change to the accredited system. The maintainer
and the certifier can identify what parts of the system as-
surance argument must be reexamined to reaccredit the
system as a result of any change. We also believe that

3Naturally, this example is incomplete! For example, we have said
nothing about the system’s initial state. Establishing the completeness
of a set of assumptions and assertions, relative to some set of security
objectives, is not something we expect to be able to do algorithmically.

Vulnerabilities

COMPUSEC
Assertion

Assumptions

1. SSO is a trusted user.
2. Hardware is tamperproof.

Information is not
downgraded except by the
system security officer (SS0).

PHYSICAL
Assertion

Secure room and
door are provided.

Assumption
1. Door is kept locked.

ADMIN
Assertion

Assumption

Door to room is always
locked.

1. Door latch works.

Figure 5: Using assumptions and assertions to find vul-
nerabilities

the assumptions and assertions approach can support
trusted system technology’s migration to the open sys-
tems goals for insertion of new technology into existing
systems.

Define an Assurance Strategy

Too often in trusted system developments the security
engineering team is isolated from the system engineer-
ing team. Many of the TCSEC’s assurance requirements
are satisfied by documentation that can be produced in-
dependently of the system engineering process. There is
little incentive to integrate the security engineering pro-
cess and the system engineering process. If a security
flaw is detected late in the design, it may be very expen-
sive to fix. Developers and certifiers need a strategy for
assessing how the system’s assurance requirements will
be satisfied, so that they can identify vulnerabilities before
significant development resources have been expended.
Ideally, the development process is structured so that this
assessment can be completed with little additional effort.

We propose that an assurance strategy be defined and
maintained by the developer to record the assurance
trade–off decisions — in the form of assumptions and

= Planned Development
 Activity with Assurance Strategy

= Completed Development
 Activity with Assessment

Developer is here

Figure 6: The development process — in progress

assertions — and to identify the techniques and methods
that will be used to satisfy the assurance requirements.
A strategy for demonstrating assurance is defined and
assessed for each development activity and reassessed
when that activity is completed. Figure 6 illustrates the
relationship of the assurance strategy to the development
activities.

The assurance strategy initially documents the set of
assumptions and assertions derived from the require-
ments. It is elaborated and refined throughout the devel-
opment, yielding the assurance argument, delivered with
the system, which provides the primary technical ba-
sis for the certification decision. The assurance strategy
streamlines the certification effort and makes the satis-
faction of the assurance requirements a major force in the
development process. In ITSEC terms, it addresses two
facets of assurance: effectiveness and correctness. Eval-
uation of effectiveness assesses suitability of functional-
ity, binding of functionality, vulnerabilities, ease of use
and strength of mechanisms. Evaluation of correctness
includes the construction and operation of the trusted
system.

The assurance strategy allows certifiers to assess the
role a design decision plays in the overall assurance argu-
ment and to determine whether the proposed assurance
techniques are effective for demonstrating the validity of
the decision. This determination, which can occur early
in the system’s lifecycle, also facilitates recertification and
accreditation when the system is modified or when the

operational configuration changes. Development of the
assurance strategy allows the developer, the accreditor,
and the user to decide how much assurance is needed for
different countermeasures. Every countermeasure may
not need to satisfy the same assurance requirements.

The assurance strategy describes how evaluated prod-
ucts will be used and what role they will play in enforcing
the system security policy. If evaluated products are not
used, the strategy should convince the certifier why no
products will suffice. Since a goal of trusted system de-
velopment is to minimize the assurance effort, the certifi-
cation team should be involved at the outset in assessing
correctness and effectiveness.

A COMPREHENSIVE
CERTIFICATION APPROACH

By completing the steps outlined in the previous sec-
tion, we reduce the certification task significantly. Most
of the certification process would evolve into an audit
of the development activities (as illustrated in Figure 7)
that contribute to the construction of the assurance argu-
ment, e.g., the formal modeling effort, the specification
of the interface requirements, the design refinement, the
requirements decomposition, and so on. The certifica-
tion team would assess the effectiveness of the assurance
strategy for each development activity and would audit
the activity’s contribution to the overall trusted system
assurance argument.

This certification approach satisfies several important
objectives. It maintains the security certification as an In-
dependent Validation and Verification activity that pro-
ceeds along with the development. It increases the fre-
quency of checks on the development so that they are
not limited to reviews of major documents produced at
a relatively small number of major procurement mile-
stones. Thus it is flexible enough to be applied to any
development lifecycle. It has ongoing visibility into the
development process, but it does not threaten the inde-
pendence of the certification team. Finally, the assertions
and assumptions framework provide a systematic way
for the developer, certifier and accreditor to reason about
countermeasures and their effectiveness.

SUMMARY AND CONCLUSIONS

The trusted product evaluation approach cannot be easily
applied to certifying trusted systems because it does not

= Evaluation
 Activity -- an audit
 of each develpment activity

= Development Activity

System Delivery

Figure 7: Certification as an audit of development

address the risks of operating the system in its environ-
ment. We have proposed a comprehensive certification
approach that eliminates many of the shortcomings of the
product evaluation approach. It combines the concepts
of an INFOSEC policy, assumptions and assertions, and
a development–motivating assurance strategy to move
toward reducing certification to an audit of a trusted sys-
tem development process.

We believe the system certification approach proposed
here promises to improve upon previous methods in four
ways:

1. it is based on a rigorous but flexible framework that
makes the risk of using the system explicit,

2. it addresses the trusted system in its environment,

3. it includes a rigorous strategy for avoiding pitfalls
in the certification and development process, and

4. it makes demonstrating assurance an explicit and
useful part of the development process.

The next step is to evaluate this approach in more detail
by applying it to a significant example.

Acknowledgements

The authors wish to thank H.O. Lubbes and the anony-
mous reviewers for their helpful comments.

References

[1] National Computer Security Center, Ft. Meade, MD,
DoD 5200.28-STD, Trusted Computer System Evaluation
Criteria, December 1985.

[2] Commission of the European Communities, Luxem-
bourg, Information Technology Security Evaluation Cri-
teria (ITSEC), June 1991.

[3] B. W. Boehm, “A spiral model of software develop-
ment and enhancement,” Software Engineering Notes,
vol. 11, no. 4, Aug. 1986, pp. 22-42.

[4] J.N. Froscher, J.P. McDermott, C.N. Payne, and
H.O. Lubbes, “Successful acquisition of certifiable
application systems (or: How not to shake hands
with the tar baby),” Proc. Sixth Annual Computer Se-
curity Applications Conf., Dec., 1990, IEEE CS Press,
pp.414-422.

[5] C. Landwehr, C. Heitmeyer, and J. McLean, “A se-
curity model for military message systems,” ACM
Transactions on Computer Systems, vol. 2, pp. 198–222,
August 1984.

[6] J. Froscher and J. Carroll, “Security requirements
of navy embedded computers,” NRL Memorandum
Report 5425, Naval Research Laboratory, September
1984.

[7] D. F. Sterne, “On the buzzword ’security policy’,” in
Proc. Symposium on Research in Security and Privacy,
IEEE, June 1991.

