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Abstract

To avoid hidden safety problems in future large scale systems, we must be able to
identify the crucial assumptions underlying the development of their components and to
enunciate straightforward rules for safe component interconnection.
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1. THREE ACCIDENTS

Contact with the Mars Observer spacecraft was lost permanently August 21, 1993, after
it was instructed to pressurize its propulsion system to enter orbit around Mars. Subse-
guent investigation[1] revealed that the most probable cause of the loss was the gradual
leaking of oxidizer past a check valve during the spacecrafts eleven-month transit to
Mars. Such a leak would have permitted fuel and oxidizer to mix in the piping of the
unpressurized propulsion system, so that when the system was repressurized, the
resulting reaction would have ruptured the pipes and caused the spacecraft to spin out
of control. Millions of dollars invested in planned experiments were lost. The opera-
tional strategy adopted for this flight was based on similar strategies that had been used
successfully, but only in near-earth, short term missions, where the resulting leakage
would have been insignificant.

A SCUD missile struck a U.S. barracks in Dahran on February 25, 1991, killing 28 and
injuring 98. A Patriot missile battery defending the area had failed to respond to the
incoming missile. This failure was ultimately attributed to inaccuracy in converting its
integer clock to a floating point representation. Only because the system had been run
continuously for 100 hours was this this inaccuracy significant; original specifications of
the Patriot system called for at most 14 hours of continuous operation[2].

The Therac-25, a computerized radiation therapy machine, became commercially avail-
able in 1982. Between 1985 and 1987, six accidents involving massive overdoses to
patients occurred before the machine was recalled to make extensive design changes,
including the installation of hardware safeguards against software errors[3]. Later study
revealed that parts of the software design and some specific software routines used in
the Therac-25 had been reused from the earlier Therac-20, which had incorporated hard-
ware safeguards against overdoses. The removal of the hardware safeguards in the



Therac-25 combined with the reuse of the software permitted a non-safety-critical soft-
ware flaw in the earlier system to become safety-critical in the later one.

While accidents involving large, complex systems almost invariably result from combi-
nations of failures rather than single ones, there is a common thread in these three acci-
dents: in each case, a system or procedure developed under certain assumptions, and
which met those assumptions, was ultimately applied in a situation where those
assumptions were knowingly or unknowingly violated, and this violation led to a cata-
strophic failure. Each of these accidents resulted in significant loss of property or life
and is thus in the category of unsafe behavior. Each involves a large, complex system in
which computers played a significant role.

2. WHAT IS SAFETY? SECURITY?

“Safety” is a word that most people understand intuitively. Providing a precise, techni-
cal definition for it is not so easy. Within the framework of dependability concepts
developed by IFIP WG 10.4, a systemm may be considered safe if it avoids “catastrophic
consequences on the environment,”[4] and in particular it avoids catastrophic failures.
A system fails if it deviates from its specification; “catastrophic consequences on the
environment” is evidently open to interpretation. Informally, a microwave oven control-
ler that fails to activate the microwave source sufficiently to reheat tonight’s leftovers
would be a failure, but not catastrophic. One that fails to turn off the source when the
timer elapses and consequently burns the food and damages the oven would have failed
catastrophically.

In the U.S., the Department of Defense, Department of Energy, the Federal Aviation
Administration, and the Food and Drug Administration, all define or embed various
notions of safety in their directives and regulations. MIL-STD-882B, for example, defines
safety as as freedom from conditions that can cause death, injury, occupational illness, or
damage to or loss of equipment or property[5]. This gives a wide latitude for regulation,
of course, perhaps unrealistically so, as Leveson observes[6]. She provides a clear expla-
nation of safety in the established terms of system safety engineering: systems are mod-
eled in terms of states and transitions; states that could, in combination with external
conditions, lead to a mishap are identified as hazards. Safety-critical software functions
are those that could directly or indirectly cause a hazardous state to exist.

Security, in the context of computers, has conventionally been defined in terms of pro-
tecting information against unauthorized disclosure, modification, or withholding
(denial of service)[7], or, conversely, in terms of preserving its secrecy, integrity, and
availability. These three terms (particularly “integrity”) have themselves been the source
of much discussion[8]. In the dependability framework, a system is secure if it prevents
“unauthorized access to and/or handling of information”4. More recently, focusing on
commercial applications, Parker[9] has argued that the purpose of information security
is to preserve availability and utility, integrity and authenticity, and confidentiality and
possession, and that any one of these properties can be lost independent of the others.
Needham recently argued that in many cases, denial of service is in fact the security
problem of primary concern[10].



3. WHERE DO SAFETY AND SECURITY OVERLAP?

Safety and security are closely related6. If we resort to the dictionary, we find that (at
least in English), the roots of safety lie in the Latin salv(us): intact or whole. This root fits
very well the notion of “safe” found in banks or secure military facilities; such a safe
should remain whole in the face of attempts to break into it. “Secure’ also derives from
the Latin; its root is securus, meaning “apart from care” or care-free. So something both
safe and secure should be intact and leave us unworried.

Few if any systems are built just to be either safe or secure. Invariably, the system is
intended to perform some other function, and the safest or most secure system often
would be one that never performed that function, be it driving a car or displaying a mes-
sage, at all.

Safety, it has been argued, is an “emergent” property -- it emerges as a property of a sys-
tem that cannot necessarily be identified in any specific single component. The same is
true of security. Although one might think of a single, certified multilevel secure com-
puter as secure in itself, if it is connected to another similar component, both may func-
tion entirely correctly, yet the composed system may be less secure than the individual
systems were.

A distinction often suggested between the safety and security points of view is that secu-
rity analyses must be concerned with intentionally (presumably maliciously) introduced
faults (e.g., Trojan horses, viruses, worms), while safety analyses may assume a rela-
tively benign environment and focus on the elimination of accidentally introduced
faults. But this distinction weakens under examination. We do not normally expect that
the air traffic controller will maliciously direct one plane at another, but we certainly
want the air traffic control system to defend against behavior of that sort, intentional or
not. And we may legitimately be as concerned about about flaws, malicious or other-
wise, in the air traffic control programs as in systems protecting sensitive information.

A recently published set of documented security flaws includes many which were intro-
duced accidentally but turned out to be exploitable by malicious users[11]. The threat
that a user may invoke a Trojan horse has been a strong influence on computer security
work -- but the user who actually invokes the Trojan horse (as opposed to its author) pre-
sumably does so accidentally, not maliciously. The notion of a Byzantine fault[12], which
has received considerable attention in the safety community, offers an interesting paral-
lel to that of the Trojan horse: in effect, it assumes that a device may fail (or keep operat-
ing) in a malicious way, providing different results to different requesters.

One particularly clear overlap between safety and security requirements occurs in the
area of denial of service. If a system that is relied on to produce a critical piece of infor-
mation -- perhaps control signals sent to a nuclear reactor or a railroad switch, but con-
ceivably authentication information of some sort -- fails to produce it, a hazardous state
may result.

4. UNDERSTANDING SECURITY FORMALLY

One of the methods used to develop secure computer systems has been to define secu-



rity formally. The goal has been to obtain a definition of security that is simple and
abstract enough that people can agree it is the property they want in the implemented
system, and then to use that definition to guide, formally or informally, the system
development.

Most formal models for security have focused on secrecy. The earliest models focused
on access control, using state-machine models as a base7; later efforts have constrained
information flow through restrictions on the traces of a system[13,14], and some recent
work has applied information theory to model the capacity of covert channels[15,16].
Though there have been some attempts to apply secrecy models to treat fault-tolerance
(hence denial of service)[17], this area is much less developed. Formal models have also
been produced of protocols used to distribute cryptographic keys, in order to permit
arguments to be framed about their security[18,19,20].

The “composability problem” in security is to identify a useful security property for
individual components that would also hold for a system of such components properly
connected[21]. Finding a composable security property that is also of practical interest
has proven quite difficult, and the increasing prevalence of systems that are patched
together from a variety of components has made this problem seem urgent[22,23].
NATO chartered a research study group to investigate the question, “How are the assur-
ances associated with the trustworthiness of a composite system to be derived from the
assurances associated with the subsystems?”” and though it convened a workshop in the
fall of 1991, results were inconclusive, and the group has been disbanded. Recently,
McLean[24] has reported some progress.

5. HOW DO WE ASSURE THE SECURITY OF USEFUL APPLICATIONS?

Some of the earliest work in computer security[25] called for the construction of a “refer-
ence validation mechanism” that would bear fundamental responsibility for enforcing
security (secrecy). This mechanism was to satisfy three requirements: it must be tamper
proof, it must always (on every access made by a subject to an object) be invoked, and it
must be “small enough to be subject to analysis and tests, the completeness of which can
be assured.” This formulation, which has provided the basis for much subsequent work
in computer security, thus explicitly limited the size of the key security mechanism on
the basis of what could be analyzed/tested completely.

The motive of this work was to support a large-scale, centralized, general-purpose,
shared computing environment that would be able to separate users (potentially pro-
grammers) with different clearances and information with different classifications. Its
approach is to isolate security-critical code and assure that it works as intended.

The Trusted Computer System Evaluation Criteria[26] (TCSEC) follow this approach:
the Trusted Computing Base (TCB) is to incorporate all security-critical code. Applica-
tions should be able to be run outside the security perimeter and, because they do not
enforce security requirements, they should not require security certification. Logically,
they are layered on top of the TCB and subject to its security enforcement. For example,
it should be possible to operate a database system on top of a TCB without difficulty. But
in practice, this would limit the database to operating at a single security level at a time -
- users who wished to put data from different security levels in the same database would



be unable to do so without “upgrading” all of the lower level data to the highest level.

As it became clear that users would like their databases to provide a multilevel service, a
need arose to provide evaluated database products as well as evaluated computer sys-
tems. This need eventually led to the Trusted Database Interpretation[27] (TDI). The
writing of the TDI was difficult and contentious partly because two different approaches
to providing trusted database management systems were being pursued. The first
one[28] called for layering of database functions on top of an existing TCB. The previ-
ously evaluated TCB would be relied on to enforce its specified security policy, and the
database system would provide additional layers that would refine that policy and
apply it. The second approach[29] designhated the database system as a “trusted subject”
that might, for example, store relations in files that were at the highest security level of
any tuple in the relation, but the database would be trusted to maintain labels within
that file that would permit it to release less-classified parts of the relation to less-cleared
users.

The TCB subsets approach is designed to permit “evaluation by parts”: each layer can be
evaluated in succession; the underlying TCB does not require reevaluation when a new
layer is added. However, this approach will likely require substantial reorganization of
an existing commercial DBMS. The trusted subject approach, conversely, may not
require much change to an existing database system, but because that system is effec-
tively placed inside the security perimeter of an existing TCB, it is really necessary to
evaluate the combination of the two systems, database and operating system, together.
Evaluation by parts is not possible.

The original notion that we could have useful application system security by developing
a strong, simple mechanism at the center of the system and simply layering the applica-
tion on top of it seems to require some revision.

6. ADIFFERENT WAY TO FACTOR THE PROBLEM

Many mathematical results are available for the analysis of individual queuing systems:
different arrival and service time distributions, different priority and service disciplines,
and different queue capacities all have been studied. But when individual queues are
combined into a network of linked queues, the analysis is greatly complicated. A key
result, achieved about 20 years ago[30], showed how, if certain constraints were imposed
on the queues in a network, the results of separate analyses of the individual queues
could be combined simply to yield the solution for the network.

Similarly, we may carefully develop an individual computing system so that we have the
needed assurance that it meets its specified safety/security requirements. But when we
link separately developed systems, unanticipated new security or safety problems may
occur. We need to identify principles or constraints like those identified by queuing theo-
rists that will permit us to connect systems and understand their behavior.

One such principle for composing information systems has been developed at NRL in
the Secure Information Through Replicated Architecture (SINTRA) project. Although it
was developed strictly to meet military security needs, and its extension or adaptation to
meet safety requirements has not been considered, we offer it here in the hope that it



may provoke others to find similar principles.

In the SINTRA architecture[31,32], physical separation and data replication are used to
provide an MLS database service. There are two kinds of components: single level sys-
tems, which are not relied upon to separate data at different classification levels, and rep-
lica controllers (RCs), which coordinate updates and must meet specific security
requirements. The idea behind the architecture is that data entered at lower security lev-
els (on single-level systems) are automatically replicated on higher security level sys-
tems. A user operating at a given security level deals with a system that contains all data
that user is authorized to see. Any changes a user makes to data, the RC automatically
propagates to higher level databases. Algorithms developed for the RC insure that the
databases at different security levels are kept consistent and that covert information flow
among them is constrained.

SINTRA’s composition principle is simple: if a higher level system requires access to
data originally classified at a lower level, then it must only access replicas of those data
atitsown level. In a world of SINTRA replica controllers and system-high systems, each
operating at a particular security level, two systems can be connected by a replica con-
troller without compromising confidentiality, because the replica controller only permits
the upward flow of data. The SINTRA world is perhaps more restricted than the worlds
treated by computer security theorists, but those restrictions make the approach practi-
cal.

7. DISCUSSION: THE NEED TO KEEP ASSUMPTIONS SIMPLE AND IN VIEW

We seem to have come a long way from our opening examples. How do the safety prob-
lems they reveal relate to architectures for MLS database service? The Mars Observer
example does not even involve computers very directly! But all three of the examples do
involve the application of systems -- procedural or computing -- in domains that were
outside the set for which they were originally designed.

Similarly, the application of commercial database systems to enforce rigorous military
security policies stretches those systems beyond their original limits. Sometimes, we
may be able to reengineer existing systems so that their domain of application is
extended directly, but we also need approaches like SINTRA that take account of the
known limitations of systems but provide an environment in which they can be safely
used to meet new needs.

Both for safety and security purposes, solid boundary walls are sometimes needed. One
of the lessons of two decades of computer security research and development is that it is
very difficult to build such walls within a single computer system and have justifiable
confidence that they lack holes. Both the difficulty of structuring systems to permit eval-
uation by parts and the requirement that the entire combination of operating system and
application be reevaluated under the trusted subject approach reflect this fact.

The declining cost of hardware and the straightforward assurance provided by properly
organized physical separation of components are making architectures based on physi-
cal separation more attractive. The separation kernel approach suggested by Rushby
and Randell in the early 1980s took this approach[33]; SINTRA has effectively devel-



oped those ideas to provide an effective, high assurance MLS database service without
requiring either substantial reconfiguration or reevaluation of existing software.

What future large scale, complex applications are on the horizon that may have hidden
safety requirements, and how might their safety requirements be exposed?

A fungus covering several acres underground in upper Michigan has been touted as the
worlds largest organism. In this case, surely the Internet qualifies as the worlds largest
computing system. What hidden safety requirements may it have?

The Internet worm[34] provided a dramatic example of a denial of service attack. But
society is not (yet) dependent enough on the Internet for a denial of service attack on it to
raise the same safety concerns that an attack on, for example, an emergency telephone
response system (e.g. a 911 system in the U.S.) would do. Increasingly attractive ser-
vices, however, which depend on users unknowingly retrieving remote programs and
executing them on their local machines, will be hard to resist but may bring with them
substantial security risks (e.g. the recent security flaw in Unix implementations of the
Mosaic Internet browser[35]).

If we want to avoid hidden safety problems in future large scale computing systems, we
must be able to identify straightforward rules to control the safe interconnection of com-
ponents, and we must be sure that each component is operated within the scope of the
assumptions that controlled its development. Until we are able to do this, we must
expect hidden safety requirements to continue to manifest themselves in accidents.
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