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Introduction  

Assets, vulnerabilities, and threats 

Protection becomes an issue for operating systems and networks when they are used to process 

information or control systems that represent a significant asset to someone.  The value of information 

may vary over time, even when the information doesn’t change -- tomorrow’s weather forecast is more 

valuable than yesterday’s.   The value of the control may also vary:  a computer system that controls a 

nuclear power plant represents a more significant asset than one that controls a microwave oven.  We are 

naturally more concerned about protecting more valuable assets.  The vulnerabilities of a system are its 

weak points -- flaws in its design or implementation that could cause it to behave in ways not intended by 

its builders or operators.  Threats are the agents that, acting against a vulnerability, could cause such 

misbehavior.  Threats can be external or internal to a system;  they may be hostile or benign; and they 

may be structured or unstructured.  Lightning usually represents an external, benign, unstructured threat.  

Random operator errors represent an internal, benign, unstructured threat, and the actions of a subverted 

operator might represent an internal, hostile, structured threat.  Assets that have significant value are more 

likely to be subject to hostile, structured threats. 

Implicit and explicit security policies 

“Secure” means, literally, “apart from care.”  A system is secure if we don’t have to worry about it.  But 

exactly what guarantees do we require of a computer system?  When computers began to serve several 

users at once, operating systems needed to protect one user’s programs and files from the errors  of others.  

In a military environment, there are requirements for multilevel security  that require a system to separate 

different levels of classified information from users with different clearances. The security policy for a 

system defines what it means for that system to be “secure”;  usually it concerns identification and 
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authentication of users, authorization of actions, and accountability for actions taken.  Often, security 

policies are implicit.    Most personal computers, as delivered, do not restrict (or even identify) the 

individuals who use them, so there is no way to distinguish an authorized access request by a program 

from an unauthorized one.  Nevertheless, users do expect certain properties of their machines -- for 

example, that running a new piece of commercial software should not cause all of their files to be deleted.  

When security policies are explicit they often specify the behavior desired of the system as a whole, so 

the implications for operating system behavior may not be obvious. 

Varieties of models 

We use “model” here in the sense of the engineer, rather than the logician.  A model of a system 

represents aspects of it that concern us without representing it in complete detail.  An architect’s model of 

a house will accurately reflect the shape and spatial relationships of the parts of the dwelling, but it will 

not include a functioning furnace or be built of materials whose strength is proportional to those to be 

used in construction.  Security models have been used for two fairly distinct purposes:  to represent the 

security policy a system is intended to enforce and to represent the mechanisms in a computer system that 

are intended to enforce the policy.  Policy models typically represent the flow of authorizations and 

information; mechanism models represent data structures found in operating systems.  Some models 

combine both purposes.   

Underlying Principles 

Concerns about how a system will behave motivate the development of a security policy for a system.  A 

security model represents the security policy, the structure of a system, or both in a form that allows us to 

reason about the policy and its enforcement. 

SECURITY CONCERNS AND SECURITY POLICY 

Information security concerns conventionally focus on preserving the confidentiality, integrity, and 

availability of information for those authorized access to it.  These concerns are usually considered 

equivalent to preventing unauthorized disclosure, modification, or withholding (denial of service) of 

protected information.  Parker suggests that, particularly in a business context, possible loss scenarios 

should be the basis for information security concerns [Parker, 1994].  He pairs possession with 
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confidentiality,  authenticity with integrity, and utility with denial of service as “elements” of information 

security.   For example, if information is encrypted and the key becomes unavailable, its utility may be 

lost  (assuming cryptanalysis is infeasible) even though it remains available.  Authenticity, but not 

necessarily integrity, is compromised if pirated software is altered so it appears to have been produced by 

someone else.   Possession, but not confidentiality, may be lost if a laptop containing the only copy of 

encrypted data is stolen and held for ransom.   

 Within the area of confidentiality, security concerns may also depend on the kind or amount of 

information disclosed to an individual.  A firm that provides accounting or legal  services to competing 

clients may need to prevent employees who have seen information concerning one of its clients from 

viewing similar information from other, competing clients.   

This is sometimes known as building a “Chinese Wall” between sets of employees exposed to different 

information [Brewer and Nash, 1989].  Preventing the undesired aggregation of information can also be a 

concern.  A bank teller may be permitted to have access to information on individual accounts, but not to 

summaries derived from all accounts, since these might reveal the bank’s overall financial status.  In a 

military context, information about the readiness of an individual unit may not be considered highly 

sensitive, while the collective readiness of all units would be.  

 Security concerns can extend beyond the information in a system to the integrity of the system 

itself.  Errant or malicious programs can overwrite data or programs, reformat disks, or, if the computer is 

part of a control system, damage property and injure people.  Programming errors have, in fact, 

contributed to fatal accidents [Leveson and Turner, 1993].   Concerns such as these typically require 

attention at the system design level, but their effects can be seen at the level of the operating system.   

 Security policy is a plan or course of action intended to satisfy a set of security concerns.  History 

teaches that security concerns are unlikely to be satisfied unless they are identified explicitly and a 

corresponding policy is implemented.  A security policy for an organization typically addresses many 

different security disciplines, including personnel security, administrative security, physical security, and 

so on.  This chapter is concerned with security policies that can be implemented within the scope of a 

computer system and, more specifically, by an operating system.  This focus narrows our concerns 
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significantly. 

Access and Authorization Policies 

Access and authorization policies specify what behaviors are permitted in terms of the types of access 

(read, write, execute) one entity (user, process, file) is authorized to have to another.  For example, “a user 

is permitted read, write, or execute access to any file that user creates,” or “a process that is permitted to 

read a file may grant that permission to any other process.”  Such a policy is called discretionary if it 

leaves the user with the ability to make some choices (i.e., with some discretion) in administering the 

policy.  A mandatory policy, conversely,  prohibits the user from making decisions.  The use of 

mandatory access control policies is typically associated with military applications, where mandatory 

security dictates that a user not be permitted to read a file classified above his/her clearance.  However, 

the requirement that every user of a commercial system present a valid password in order to gain access to 

it is also a form of mandatory security policy.  Policies often include both mandatory and discretionary 

parts: discretionary policy permits the Secret-cleared user to decide whether or not to permit other users 

with Secret or higher clearances to read a Secret file; mandatory policy prohibits the Secret user from 

placing Secret-labeled data where it could be read by users not cleared for it.   Role-based security 

policies assign privileges to job functions (roles), rather than individuals;  the user inherits the privileges 

of the job assigned.   This approach can simplify the management of privileges, since a new privilege 

associated with a particular job is automatically inherited by all users who occupy the corresponding role. 

Information Flow Policies 

Restricting the flow of information is often the purpose of access control policies:  a class of users is 

denied access to some physical object (a file, for example) because information contained in that file is 

not intended to flow to users in that class.  Recognizing this fact, and stating the policy directly in terms 

of constraints on information flow, can simplify and clarify the resulting security requirements.  The 

classic example is the formulation of military security policy as a lattice of security classes, with the 

requirement that information can only flow upwards in the lattice.  Commercial applications seem more 

often to involve total isolation of different classes (as in the Chinese Wall policy), but when divisions of 

two competing firms cooperate on a particular project or proposal, for example, it may be more natural to 
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characterize security policy in terms of permitted and prohibited information flows, rather than accesses.  

Relationships between component suppliers and system integrators may also lead to security policies 

formulated most naturally in this way. 

Integrity and Availability Policies 

Although access control and information flow policies have attracted the most attention and have the best 

developed models and supporting structures in operating systems and networks, two other kinds of 

security policies are worth noting here: integrity and availability policies.  “Integrity” has many meanings 

to many groups. In the context of operating systems and networks, protecting integrity usually means 

protecting data from unauthorized or improper modification.  Information flow and access control policies 

may incorporate integrity concerns.  For example, an information flow policy that restricts the flow of 

information among security classes might be reformulated to restrict the flow of information among 

integrity classes, where a higher integrity class represents information that is more likely to be accurate or 

correct, and a lower integrity class represents less reliable information.  To preserve the integrity of 

reliable information, we might prevent low integrity information from flowing to higher integrity classes.  

Similarly, we might protect integrity by controlling read and write accesses to objects with different 

integrity labels. 

 Having crucial information available when needed is often more important than preserving its 

confidentiality or its integrity.  Of course, corrupted information may be of little use even if it is available, 

and relying on compromised information (e.g., a crypto key) can have unpleasant consequences.  In the 

context of operating systems, protecting the availability of information usually means controlling access 

to resources so that one process cannot indefinitely prevent others from gaining access to it.  Systems that 

serve several users at once usually include precautions against accidental loss of resources but rarely 

protect against malicious attacks aimed at denial of service.  Policies for system availability are rarely 

distinguished from those for reliability, which typically consider only accidental failures, not malicious 

behavior.   

SECURITY MODELS 

Security policy is at root informal, representing a plan or course of action.  A security model attempts to 
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capture the security-related behavior and/or structure of a system more formally. It is an abstraction of a 

system from the standpoint of security and may omit other important aspects that do not affect its security 

properties.  Most security models have focused on confidentiality, rather than integrity or availability. 

Policy Models and System Models 

 A security model may focus either on a system’s security policy (e.g., “no individual can view a 

message for which he lacks clearance”) , leaving open questions of system design and implementation, or 

on the system’s structure and operations, its mechanisms (e.g., “a process running on behalf of a given 

user can only open a file for reading if there is an entry for that user in the file’s access control list with an 

access mode of read”).    Security policy amounts to the top level security requirement for a system, so 

we consider security policy models as models of system requirements.  Some models attempt to represent 

both the requirements and the mechanisms;  if such a model is used to guide a development, it will 

constrain the set of possible set of implementations more tightly than a model of the requirements only.  

It’s possible to view the distinction between models of requirement and mechanism simply as a difference 

in the level of system design being modeled.  An application-based model may define and refer to entities 

visible to users (users, messages, files, input and output devices), while a mechanism-based model may 

focus on processes, storage blocks, file locks, and so forth.  Difficulties arise when security requirements 

at the application level are difficult to realize with the mechanisms available at lower levels. 

Proving Properties of Models 

 Whether a particular model focuses on the domain of requirements or the domain of 

implementations, it should provide a structure with a clear relationship to that domain, so that reasoning 

about the more simple structure of the model carries over to the relevant real-world domain.  A good road 

map provides a simplified representation of a network of streets and roads that permits a driver to reason 

correctly about possible paths to a particular destination and, consequently, which way to turn at the next 

intersection.  A successful model of a set of security requirements should permit its user to reason about 

how a system satisfying those requirements will behave.  A security model of the implementation domain 

should support reasoning about the security-related behavior of the modeled class of mechanisms. 

 Because security models are artificial -- the model consists of  abstractions whose properties the 
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modeler is at liberty to define -- it is possible to reason about them more rigorously than one can reason 

about the real world directly.  This is a benefit, in that we can state properties we desire of the model (e.g., 

that its behavior satisfies certain security constraints) and, potentially, determine with certainty whether 

the property holds for the model or not.  But caution is required:  a property that we prove holds for the 

model still may not hold in the real world, if the intended relationships between the model and the real 

world are violated.  If a road map omits, say, a tunnel of which cartographers were unaware, or that was 

built after the map was printed, the driver may think he cannot cross a river without going over a bridge, 

when in fact he could.  Likewise, proving that a user can never gain access to a file according to a 

particular security model is of interest only if the system as implemented conforms to that security model.   

  The access matrix model [Lampson, 1971, Graham and Denning, 1972] is based on abstraction 

of operating system protection structures.  Its simplicity and generality have led to its wide application 

over many years, and it continues to be a reference point for system developers and users.  It includes 

three primary components:  a set of passive objects (files, devices or other entities implemented by the 

operating system), a set of active subjects, which may manipulate the objects, and a set of rules governing 

the manipulation of objects by subjects, including transformations to the access matrix itself.  A subject is 

a process and a domain (a set of constraints within which the process may access certain objects);  every 

subject is also an object, since it can be read or otherwise manipulated by other subjects.  The access 

matrix is a rectangular array with one row per subject and one column per object.  The entry for a 

particular row and column reflects the permitted modes of access between the corresponding subject and 

object, typically a subset of {read, write, append, execute}.  Although the access matrix is never 

implemented literally as a matrix (it would be very sparse), it provides a basis for reasoning about 

accesses within a system.   [EDITOR: refer to chapter 115 (Authorization, Access controls, and Intrusion 

Detection) here?] 

 Harrison, Ruzzo, and Ullman [Harrison, Ruzzo, and Ullman, 1976] developed a particular 

formalization of the access matrix model (the HRU model) and identified the safety property for it:  given 

an initial state for the access matrix and a set of commands, can a particular subject gain a given right a to 

a particular object?  A configuration is safe for a if there is no sequence of transformations that will cause 
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a to be added to an element of the access matrix that does not already contain it.  They were able to show 

that the safety problem for the HRU model is undecidable in general, although it is decidable if the access 

matrix transformation rules are “mono-operational” -- i.e., if each request to change the access matrix 

results in only a single change of the form “add/remove a row/column” or “add/remove access right a for 

a single cell in the matrix.”  Unfortunately, mono-operational systems exclude most practical security 

policies, since, for example, they exclude policies that grant the creator of an object particular access 

rights to that object.  The take-grant model [Jones, Lipton, and Snyder 1976], which represents subjects, 

objects, and accesses with directed graphs, has a linear time algorithm for safety, but although it has been 

explored formally in considerable detail [Snyder, 1981, Bishop, 1988], it has seen little practical 

application.  Sandhu has developed the schematic protection model and typed access matrix models 

[Sandhu, 1988, 1992a, 1992b],  based more closely on the HRU approach, and has been able to narrow 

the gap between models for which safety can be proven and those reflecting practical access control 

policies. 

Composability of Security Properties 

 If we define a security property for a system, show that the property holds for a model of that 

system, and show that the model accurately represents the system, we can be confident that the behavior 

of that system will enforce that security property.  Unfortunately, we cannot be sure that if we connect 

two such systems together, the combination will enforce the same security property that the systems did 

individually.  This is referred to as the composability problem: the combination will only be secure if the 

security property in question is composable, even if each system individually enforces the specified 

security property.  As computers are increasingly interconnected, security threats and vulnerabilities 

arising from those interconnections are growing.  Finding useful, composable, security properties that 

would provide a basis for connecting systems without introducing new vulnerabilities is a current 

research topic.  

ENFORCEMENT 

The concept of a monitor as a system component that controls allocation and use of a particular resource 

led to the notion of a reference monitor as a key component that would control the accesses subjects 
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could gain to objects [Anderson, 1972].  When a subject attempts to gain access to an object (e.g., to open 

a file for reading), the reference monitor checks the access matrix to see whether the requested access is 

allowed;  if not, the request is denied.  Three properties are required of a reference monitor: it must be 

invoked on every access attempt, it must be tamperproof, and it must be small enough to be subject to 

thorough testing or verification (i.e., it must be correct).  A security kernel, the hardware and software 

realization of the reference monitor, is intended to include all of the security enforcement mechanisms in 

an operating system and nothing else.    

 General purpose, efficient security kernels proved hard to realize [Landwehr, 1983], and partly as 

a consequence, the notion of a Trusted Computing Base (TCB) developed.  The TCB, like the security 

kernel, is intended to include all of the security enforcement mechanisms in the system (thus the TCB 

boundary is the system’s security perimeter) but the TCB is not required to be minimal -- it may include 

non-security-relevant software as well.  The Trusted Computer System Evaluation Criteria  (TCSEC) 

[Department of Defense, 1985] are organized around the TCB concept; they were developed to permit 

different commercial computer system products to be ranked in terms of how well they realize it.  To be 

ranked at any of the top four of the seven levels established by the TCSEC, the system’s documentation 

must include a security policy model and some degree of evidence that the implementation in fact 

enforces the constraints of that model. 

Best Practices  

A system may in fact be quite secure, but if we cannot convince others of this fact, they will be unlikely 

to trust valuable assets to be placed under its control. Security models can be used to define what security 

means for a given system, to guide the system’s designers and developers so that an implementation 

provides the intended security properties, and to convince others that the system is trustworthy.  In this 

section, we first review basic access and authorization models and then security policies and models 

concerned with the three traditional security properties: confidentiality, integrity, and availability.  For 

each property, we will describe different models developed to permit a determination as to whether a 

system that corresponds to the model preserves the property of interest.   

ACCESS AND AUTHORIZATION MODELS 
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The fundamental model for access control is the access matrix  model, described above.  The modes of 

access registered in the access matrix at any instant define the authorized accesses between subjects and 

objects.  Because this model corresponds so well both to intuitive notions of controlling the access of 

people to material objects and to the protection structures implemented by many operating systems, it is 

widely known and used.  We can say that the contents of the access matrix encodes the system’s security 

policy, and that it is up to the operating system’s mechanisms to enforce this policy.  Separating policy 

and mechanism is usually desirable in a system design.   

 But if we want to reason about whether or not some particular subject can ever read or write some 

particular object, or whether information can leak across some system boundary, the access matrix model 

is less than ideal.  First, the undecidability of the safety problem limits general results.  Second, and 

closely related, is the problem of Trojan horse programs.  Programs, not humans, initiate the operations 

that alter the access matrix, and a program executed by a given subject can generally exercise all the 

rights of that subject, including granting those rights to other subjects.  This means that humans who 

invoke any Trojan horse program are vulnerable to the complete redistribution of their access rights 

(within the bounds of the authorization scheme), and, unless we are willing to assert that no user will 

invoke such a program, necessitates a worst case assumption about propagation of access rights. 

 To address these two problems, Sandhu has introduced a version of strong typing to access 

matrices [Sandhu, 1992b].  Each subject and object is assigned an immutable type at its creation, and, 

with some additional constraints on the structure of commands in the ternary monotonic typed access 

matrix model, Sandhu shows that its safety is decidable in polynomial time. 

 A third problem that arises with the access matrix model is the practical difficulty of including all 

of the relevant objects in the access matrix.  In most operating systems, processes, files, and devices may 

have these kinds of access controls associated with them, but there are often other shared, user-visible 

data structures and resources (such as file names, file locks, system clocks) that do not.  If the security 

policy calls for constraining information flow from one set of objects to another in an environment that 

may include Trojan horses, these uncontrolled resources can act as covert channels [Lampson, 1973], 

permitting violations of the security policy even though the controls listed in the access matrix are 
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correctly enforced.  The shared resource matrix methodology [Kemmerer, 1983] provides a practical 

approach to identifying such channels. 

CONFIDENTIALITY MODELS 

Because protecting sensitive information against disclosure is a major concern of military security, and 

because protecting confidentiality seems to be a more tractable problem than maintaining integrity and 

availability, confidentiality models dominate security modeling research literature.  The best known and 

most widely applied of these is the Bell-LaPadula model, which is closely based on the access matrix 

model, to which it adds the military security lattice, some additional data structures, and a set of 

definitions and rules [Bell and LaPadula, 1975].  Its goal is to establish a formal structure in which even a 

Trojan horse with access to sensitive data would be unable to leak those data to a user or program that did 

not already have access to them.   

Military Security Structure 

Military security classifications are characterized by a linearly ordered set of sensitivity levels (e.g., 

confidential, secret, top secret) together with a set of compartments.  Compartments typically correspond 

to information on a certain topic or from a certain source that requires special protection.  The security 

label for a particular document or paragraph will include a sensitivity level and a (possibly empty) set of 

compartments.  To be authorized access to a particular document, the user must have a clearance for both 

the sensitivity level and all of the compartments listed in the label.  A sensitivity level and a set of 

compartments denotes a security level.  In general, information is allowed to flow from one security level 

to another if the sensitivity level of the source is lower than that of the destination (e.g., from confidential 

to secret) and if the compartment set of the destination level includes all of the compartments of the 

source level.  Recognizing that (unclassified, no compartments) is the lowest possible security level, from 

which any information can flow upwards, and (top secret, all compartments) is the highest level, which 

can receive information from any other level, we see that the set of security levels together with the flow 

relation forms a lattice [Denning, 1976]. 

Bell LaPadula Model   

The Bell-LaPadula model associates a security level with each subject and object and identifies a set of 
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access modes that subjects may have to objects, including read, write, and execute.  When a subject 

attempts to read an object, the access matrix is checked, but an additional check is required to determine 

whether the subject’s security level is greater than or equal to that of the object to be read (since it is 

permissible for a secret level subject to read a confidential level object, for example).  Unless the access 

matrix check (referred to as discretionary access control or DAC) and the security level check for reading, 

(referred to as the simple security property of mandatory access control (MAC), or “no read-up”) both 

succeed, access is denied.  If a subject requests write access to an object, the request is checked against 

the access matrix for DAC permission, and it is checked to be sure that the security level of the object to 

be written is equal to the current security level of the subject (referred to as the *-property, or “no write-

down”). This check prevents, for example, a secret level subject from writing secret data into a 

confidential level object.   

 The argument that systems conforming to this model preserve security proceeds by identifying a 

secure state of a system as one in which no users have accesses to objects that would violate the security 

policy.  The so-called Basic Security Theorem (BST) asserts that if a system starts in a secure state and 

proceeds to new states only through a set of possible transitions, each of which guarantees termination in 

a secure state if it is initiated from a secure state, then the system will never reach an insecure state.  Two 

noteworthy objections have been raised about this formalization of confidentiality.  First, the BST holds 

regardless of the characterization of a secure state -- if we defined a secure state to any state in which all 

objects could be read or written by all subjects, we could still prove the BST.  Consequently, we cannot 

rely on the fact that the BST has been proven to assure ourselves that we have found an intuitively correct 

definition of secure state [McLean, 1985].  Second, some intuitively insecure systems in fact satisfy the 

particular definition of security given by Bell and LaPadula [McLean, 1990].  It is possible to construct an 

operation that satisfies the stated security properties but changes the security levels of subjects and objects 

between states.  Thus, while no accesses violate the security policy in either the state before or after the 

transition, the transition itself has changed the system state in a way that is intuitively insecure, yet not 

prohibited. These problems have not prevented the model’s use as engineering guidance in many system 

developments, however. 
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 A major challenge in applying this model rigorously is the covert channel problem mentioned 

earlier.  Although the Bell-LaPadula model is defined only in terms of access controls, its purpose is to 

enforce an information flow policy -- information should not flow from higher security levels to lower 

ones by any path.  Finding all of the potential data structures and hardware devices in a system that could 

be used to convey information between security domains is a difficult but necessary part of assuring that 

an implementation based on access control correctly realizes an information flow policy. 

Non-Interference Model 

The non-interference model has also been used in system developments as a basis for showing that  a 

system enforces confidentiality ([Goguen and Meseguer, 1982, 1984], based on earlier work by Feiertag 

[Feiertag, et. al., 1977]).  This model focuses on capturing the confidentiality requirement rather than the 

mechanisms required of the implementation.  By focusing on the properties required to preserve 

confidentiality at the system specification level, it achieves a cleaner and more intuitive definition of 

security and permits the implementer more flexibility in realizing the requirements.   

 This model describes a system in terms of the sequence of system calls (trace) invoked by users at 

different security levels.  System output is defined as a function of the system’s input history, the user 

requesting the output, and the user’s clearance.   If a user with a given clearance sees the same output at 

any point in the system’s history that he would see if none of the inputs from users with higher clearances 

had occurred (i.e., if their inputs were purged from the trace), then the system is secure.  That is, the 

higher level inputs do not interfere in any way with the behavior observed by lower level users; hence the 

model’s name.   

 Goguen and Meseguer developed a set of “unwinding conditions” to help apply this model in a 

state machine context more commonly used in system specification and development.  Proving that the 

unwinding conditions hold for the state machine’s transition functions establishes non-interference.  This 

approach has the benefit that covert storage channels are identified in the normal course of developing the 

unwinding conditions and proving non-interference; no separate effort is required to identify them as it is 

in developments based on the Bell-LaPadula model. 

Discussion 
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Applying the access matrix model, Bell-LaPadula model, or non-interference model to an operating 

system development is likely to lead to a stronger system with fewer security flaws than if security is not 

given explicit consideration.  But there are several issues left open by current models and practices.  One 

we have already touched on: covert channels.  Sometimes covert channels are shrugged off as a 

consideration of only academic concern, and, given certain assumptions about the threats a system is 

subject to and the requirements it must meet, sometimes this  attitude may be appropriate.  However, if 

strict separation is desired between information in different domains, then the concern is not merely 

covert channels, it is channels of any sort that permit information to cross the boundary between domains.  

Assuming that some such channels exist, the question becomes: what is their capacity, and what 

information can be transferred over them?  The relevant models of information, and information flow, 

have their roots in Shannon’s information theory [Shannon and Weaver, 1963].  Some recent efforts have 

attempted to model known covert channels in real system designs using information theory [Kang, 

Moskowitz, and Lee 1995], but this is still a research topic. 

 All of the models discussed in this section so far are for deterministic systems, where the current 

state and input uniquely determine the next state.  This basis may be appropriate for modeling single 

computers, but is not fully satisfactory if the security model is to be used to analyze either a network or a 

system specification, where the current state and input may only determine a set of possible next states 

(i.e. non-deterministic systems).  Substantial research effort has been devoted to developing 

nondeterministic, including probabilistic, models for  properties like non-interference, but none of these 

has been demonstrated in a practical system development.  For a good summary, see [McLean, 1994]. 

 Note that the security properties intended to be enforced by Bell-LaPadula and non-interference 

type models are fundamentally policies of strict separation -- no information is supposed to flow between 

incommensurate security domains, and information may flow at most upward from lower security levels 

to higher ones.  When models like these began to be developed in the early to mid 1970’s, hardware was 

expensive, and sharing hardware across security levels seemed essential.  With the drastic declines in the 

cost of hardware in the last decade, separating information (if isolation is what is required) by storing it 

on physically separate computer systems is a much more realistic approach than it once was.  Of course, if 
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absolute separation or simple upward flow does not meet the security requirements of the application, 

physical separation may not work so well, after all.  In this case, not only walls, but also gates may be 

required.  The best use of security models like Bell-LaPadula and non-intereference in this case may be to 

model the “walls,” and modeling the gates -- paths between domains that are sometimes opened 

intentionally -- may require a different approach that can assure that only authorized information type 

passes through.  Indeed, the Bell-LaPadula model countenances such flows via the mechanism of a 

“trusted subject” that is permitted to violate the *-property but is trusted not to compromise security.  

Establishing trust in a subject is an activity outside the security model.  An early but still relevant 

approach to organizing a system based on physical separation and encryption rather than trusted software 

is described by Rushby and Randell [Rushby and Randell, 1983].  More recent work to develop a 

multilevel secure database system based on physical separation and data replication, and to extend the 

architecture to provide an MLS distributed computing service is described by Froscher, et al. [Froscher, et 

al. 1994]. 

INTEGRITY MODELS 

Integrity models reflect the policies and mechanisms intended to assure that data and programs are 

modified only in an authorized manner.   The access matrix model includes controls on writing to subjects 

and objects, and these can be used for this purpose.  For example, only the system administrator may be 

granted write access to a file used to record the list of authorized users of the system.  Of course, if the 

system administrator ever invokes a Trojan horse program, it could pass this privilege to any other user, 

because these controls are discretionary. 

Lattice-based Integrity   

 To limit the ability of Trojan horses to alter data that might be unclassified, yet critical to system 

operation, Biba [Biba, 1977] introduced a lattice of integrity levels to the Bell-LaPadula model 

corresponding to the security lattice.  The controls imposed on subjects and objects with respect to their 

integrity levels are intended to prevent high integrity data from being modified based on low integrity 

data.  The integrity level of an object is not necessarily related to its security level.  For example, an 

airline’s current flight schedule is readable by all, but should only be written by authorized subjects.  
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Conversely, actions of any user might append records to the system’s audit file, but ability to read the 

audit file might be limited to system administrators. 

 In Biba’s “strict integrity policy” a subject can only “read up” in integrity and “write down”.   

The system administrator and the list of authorized users would both be assigned high integrity levels, so 

that even if a Trojan horse granted a lower level user access to the critical file, that user could not modify 

the file.  There is still a vulnerability, however, since the Trojan horse could modify the file directly, 

instead of trying to pass permissions to another user. 

 Several systems built to meet military security requirements have included both security and 

integrity levels for subjects and objects, and some practical policies that use integrity levels have been 

proposed [Lipner 1982, Shirley and Schell, 1981, Schell and Denning, 1986].  These policies aim 

primarily at enforcing configuration controls as described in the example above, rather than assessing 

whether the output of a particular program or activity is of higher integrity than another.  Typical integrity 

levels for a system might be user, programmer, and administrator (from low to high).  Integrity 

compartments can be used to isolate different functional areas.  A properly constructed integrity lattice 

can be used to model conflict-of-interest classes and enforce a Chinese Wall policy, as well 

[Sandhu,1993]. 

Commercial Integrity 

 An integrity model based on traditional controls in commercial systems to prevent fraud and 

assure accuracy in records has also been proposed [Clark and Wilson, 1987].  This informal model 

defines Unconstrained Data Items (UDIs), Constrained Data Items (CDIs), Transformation Procedures 

(TPs), Integrity Verification Procedures (IVPs), and Logs and incorporates the notions of separation of 

duties and certification.  UDIs reflect raw, unchecked information that may be entered into the system.  

CDIs can be altered only by TPs, which may use UDIs and other CDIs as input.  A change to  a CDI also 

appends a record to a Log file.  IVPs are run periodically against all of the CDIs to assure that they are in 

a valid state.  There is a set of certification assertions (for humans to assure) and enforcement assertions 

(for machines to assure), including, for example, that the system must maintain the list of relations of the 

form (UserID, TPi, (CDIa, CDIb, ...)) relating a user, a TP, and the data objects that TP may reference on 
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behalf of that user.  The system must ensure that only executions described in one of these relations are 

performed.  A human must assure that this list of relations is subjected to the separation of duty 

requirement.  The Clark-Wilson model provides highly intuitive structure in which particular applications 

can be developed, but assuring that an implementation conforms syntactically to the structure of the 

Clark-Wilson model by itself can do little to assure that the system behaves as intended.  In this way, the 

model is similar to the access matrix model: it provides a structure for expressing a policy; a human must 

determine whether enforcement of that particular policy will have the desired results. 

AVAILABILITY MODELS 

Assuring “availability” or providing “assured service” is often included in lists of security concerns, 

perhaps because those phrases are brief and positive, but our real concern is to prevent service from being 

denied by a malicious attack.  Work in the fields of dependability and fault-tolerance addresses 

availability in the positive sense, where system availability may be measured as mean time between 

failures divided by the sum of mean time to failure and mean time to repair.  But these calculations are 

usually based on failures occurring randomly according to some model and not as the result of malicious 

actions.   

 To represent the relevant aspects of preventing denial of service, it is necessary to characterize the 

agreement between the service provider and the user.  Further, the type of resource or service being 

provided will have to enter into the formulation of the model [Dobson, 1991].  

  In the 1980’s, Yu and Gligor developed a specification and verification method for preventing 

denial of service in the absence of failures and integrity violations [Yu and Gligor, 1990].  A user 

agreement in their model is a set of constraints on the sequences of calls the user may make to the shared 

service.  A user who violates the agreement cannot expect to obtain the intended service, but should not 

be able to interfere with the service guarantees made to other users who abide by their agreements.  The 

Finite Waiting Time (FWT) policy they propose incorporates the user agreements, a fairness policy (a 

user will not be blocked forever if that user has many opportunities to make progress), and a simultaneity 

policy (a user will eventually have all the opportunities needed to make progress, provided that the user 

agreements can be satisfied).  They apply their temporal-logic-based specification and verification 
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method to a general resource allocator and prove that all users eventually make progress and receive 

intended service. 

 Building on this work, Millen has defined a denial-of-service protection base (DPB) analogous to 

the concept of a trusted computing base (TCB) [Millen, 1993, 1994].  The TCB is that part of a system 

that is responsible for the enforcement of confidentiality and integrity properties;  the DPB must offer 

those services whose loss would be viewed as a denial of service.  Millen develops this concept as a state 

machine, drawing on earlier models of resource allocation in operating systems.  A DPB is characterized 

by a resource monitor, a waiting time policy, and user agreements, and it must satisfy two conditions: 

each benign process will make progress in accordance with the waiting time policy (progress), and no 

non-CPU resource is revoked from a benign process until its time requirement is zero (patience).  A 

resource monitor is built on a set of processes and resource types, each of which has a fixed capacity.  

Processes may request allocations of particular amounts of particular resources, including the CPU.  The 

state of the resource monitor is given by the current allocation matrix, which determines how many units 

of each resource type are allocated to each process, the time vector, the space requirement matrix, and the 

time requirement matrix.  The time vector records the real time at which each process was activitated or 

deactivated.  The explicit treatment of time in the model permits the definition of waiting time policies 

based on Maximum Waiting Time (MWT) and Probabilistic Waiting Times (PWT) in addition to the 

FWT policy of Yu and Gligor. 

 Despite this progress in developing denial of service models, it must be acknowledged that these 

are still research topics.  None of these have been applied to production systems as yet, though with 

increasing concern about denial of service attacks, particularly against networks, these models, or their 

successors, may soon find application.  

Research Issues and Summary  

Models can represent a protection or security policy, the mechanisms that implement a policy, or both.  

They can provide a basis for reasoning about how a system is intended to behave or how it behaves in 

fact.  Models have been used effectively to guide the design and implementation of systems, to help users 

understand how a system is intended to work, and to raise the confidence of evaluators and certifiers that 
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a system is safe to operate. 

 Unless a system is known to contain or control a significant asset, it may not be the target of 

malicious threats and its vulnerabilities may remain untried.  Recognizing security concerns, including 

loss of possession or confidentiality, integrity or authenticity, and utility or service, is the first step in 

forming a security policy.  As a course of action intended to satisfy a set of security concerns, a security 

policy is usually stated informally.  It may define mandatory controls, discretionary controls, or controls 

based on users’ roles.  It may call for two-person control of particular functions or operations in order to 

secure  a system against an attack by a single individual, or for a “Chinese Wall” to separate employees 

with knowledge of competing clients’ records.  An access control policy constrains the objects a user may 

read, write, or execute, while an information flow policy controls whether the data read from one object is 

permitted to affect data written to another. 

 Models are typically stated more formally than policies.  It is sometimes possible to prove that a 

formally expressed model has some desired property, such as barring certain kinds of accesses or certain 

undesired information flows.  Protection models represent the protected objects in a system, how users or 

subjects (their proxies in the computer system) may request access to them, how access decisions are 

made, and how the rules governing access decisions may be altered.  The access matrix model is the 

primary example of a protection model.  Although the safety property (determining whether or not a 

given subject can ever gain a particular access to a given object) is undecidable for this model, its ability 

to represent a wide variety of security policies and the degree to which its structures match those 

commonly found in operating systems have kept it in wide use. 

 Security models have a broader scope than protection models;  they may represent the security 

policy requirements of maintaining confidentiality, integrity, and availability in the face of malicious 

attacks, possibly including hostile software.  The Bell-LaPadula model was developed to capture 

confidentiality requirements as reflected in the lattice of security levels defined by military classification 

schemes.  Systems built to conform to it implement both mandatory access controls, which normal users 

cannot modify, and discretionary controls, like those represented in the access matrix model, which users 

can change.  The mandatory controls are intended to preserve confidentiality of information across 
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security levels even if users execute Trojan horse programs.   The non-interference model has similar 

objectives to the Bell-LaPadula model, but it represents a system in terms of its response to a sequence of 

calls (a trace).  If a user at a given security level sees the same system behavior whether all inputs from 

higher level users are purged from the system trace or not, then the non-interference property holds and 

the system is considered secure.  Systems have been built both to conform to the non-interference model 

and to the Bell-LaPadula model.  Covert channels, mechanisms that conform to the security model but 

permit information to be transmitted in violation of security policy, are an implementation issue for both 

models, although a system based on the non-interference should not require the separate analysis of 

storage channels that a Bell-LaPadula based implementations do. 

 Integrity models have received much less attention than confidentiality models, not because 

people are less concerned about integrity, but because it has many, often application-specific, 

interpretations.  Biba’s integrity model defines a lattice of integrity levels analogous to the lattice of 

security levels and controls the modification of data in a way analogous to the Bell-LaPadula model 

controls its disclosure.  Implementations of this model have been used to enforce configuration control 

policies.  The less formal Clark-Wilson model reflects integrity controls found in commercial systems 

organized around transactions. 

 Least developed are availability models, better termed models for  denial of service prevention.  

Both the Yu-Gligor and Millen models require formalizing agreements between the user and the system 

as to what constitutes delivery of service.  Without such agreements the basis for asserting that service has 

(or has not) been denied is lacking.  Neither model, however, has seen significant application. 

 Confidentiality and integrity controls are typically implemented by some form of reference 

monitor, which validates each reference by a subject to an object.  A Trusted Computing Base (TCB) 

comprises all of the security enforcement mechanisms in a computer system, and the system’s security 

perimeter is the boundary of the TCB.  Millen’s model for preventing denial of service introduces the 

notion of a denial of service protection base (DPB) analogous to the TCB. 

 All of the models discussed here have been developed to reflect the requirements and behavior of 

a single computer system, yet we live in a world of increasingly interconnected machines. Not 
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surprisingly,  many current research issues in this field stem from this difference.  These include the 

development of models that can be applied to nondeterministic specifications, the identification of 

security properties that are “composable” (i.e., if the property holds for two components, then it will also 

hold for a correctly connected combination of the two), and the development of principles for allocating 

security requirements among components (decomposition). 

 Current models also tend to reflect absolute, rather than relative, notions of security.  A policy 

model prescribes that information flow either is or is not permitted between two entities or security levels.  

In practice, some limited amount of information flow may be tolerable.  The tools of information theory 

are beginning to be applied to quantifying such flows in practical systems. 

 The representation of security policies oriented toward commercial applications, where integrity 

and denial of service concerns typically outweigh confidentiality, should lead to improved models in 

those areas.  Assuring that a system actually enforces a specified policy, and that it continues to do so 

through a series of releases and upgrades, continues to be a difficult problem.  Finally, distributed 

architectures that support freely moving software “agents” that may ship back not only images and text, 

but also programs in one form or another to be executed, raise interesting security questions as to how one 

can be sure that such programs cannot cause damage when executed. 

Defining Terms  

Access matrix:  matrix with a row for each subject and a column for each subject and each object.  

Records authorized access modes (such as read, write, execute) subjects may have to objects.  Represents 

the current access authorization policy, but never implemented directly as an array because it would be 

too sparse. 

Covert channel:  a channel used to pass information not originally intended for that purpose.  Usually 

applied to channels that permit two cooperating processes to pass information in violation of the security 

policy, but  without violating the system’s access controls.   For example, if one process suddenly begins 

to impose heavy performance demands on a system, it may cause responses to other processes’ requests to 

be delayed.  This change in delay can be used as a signal. 

Discretionary access controls (DAC):  Access controls that may be modified by ordinary subjects.  The 
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access controls implemented by typical file systems are discretionary, in that the owner of the file can 

grant other users/subjects the right to read, write, or execute the file.  A Trojan horse executed by an 

unwitting subject can alter the discretionary access controls on the associated user’s files. 

Mandatory access controls (MAC):  Access controls that cannot be modified by ordinary subjects.  In 

military security, mandatory access controls are intended to prevent a user (or a Trojan horse executing on 

that user’s behalf) from moving secret data to an unclassified file, where uncleared users might read it.  

Special “trusted” subjects used by system administrators may be permitted to violate these constraints in 

limited ways. 

Object:  a passive entity within a system, such as a file, but any entity that can be used to record or 

transmit data may be considered an object.  The mapping of the entities implemented by the system to the 

subjects and objects of a security model is a crucial step in assuring that the system’s behavior will 

conform to the model. 

Role-based access controls:  access controls associated a user’s job-related responsibilities, rather than 

with individual identity or security clearance.   Like mandatory controls, in that a subject may not 

arbitrarily pass role-based privileges to other users.  Provides a convenient way to organize authorizations 

in relation to job assignments, so that if one individual must assume another’s job temporarily or 

permanently, the individual inherits the role-based authorizations associated with the new assignment. 

Reference monitor:  a system component that enforces system security policy by checking all accesses 

initiated by subjects to objects and permitting only those that are consistent with the policy.  To be 

effective, the reference monitor must be tamperproof, enforced on every access, and it must not make 

mistakes. 

Safety problem:  to determine whether or not a given subject may at some time obtain some specific 

access authorization to some specified object.  For many straightforward security models, the general 

safety problem is undecidable. 

Security policy:  a plan or course of action intended to satisfy a set of security concerns.  In the context 

of operating systems, a security policy typically seeks to ensure that data are protected against 

unauthorized disclosure, modification, or withholding.  Usually expressed informally, in natural language, 
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they are sometimes formalized.  Security policies should be explicit, but often are not. 

Security model:  an abstraction representing security policy, system mechanisms that can enforce it, or 

both.  May be used to inform users how the system behaves, guide the system’s design and 

implementation, and reason about its properties. 

Subject:  an active entity within a system, such as a process or device.  Forms a unit for assigning 

authorizations, usually associated with (acting on behalf of) some user.  Subjects are also objects. 

Trusted computing base (TCB):  the collection of all mechanisms in a system that enforce security 

policy.  The TCB boundary represents the security perimeter of the system. 
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Further Information 

Pfleeger’s textbook, Security in Computing, provides a comprehensive introduction.  Denning’s 

Cryptography and Data Security is still a valuable source, and the most comprehensive treatment of how 

to build an operating system to meet security requirements is Gasser’s Building A Secure Operating 

System.  Those new to the field may also find Computers at Risk,  a report available from the National 

Research Council, a good introduction to computer security issues generally; it includes quite a bit of 

tutorial material along with its research recommendations.. 

 Much of the key literature in this field is published in the proceedings of annual conferences.  The 

proceedings of the IEEE Symposium on Security and Privacy, the Annual Computer Security 

Applications Conference, the smaller IEEE  Workshop on the Foundations of Computer Security, the 

European Symposium on Research in Computer Security (ESORICS), and the ACM’s Conference on 

Computer and Communications Security will reflect the latest research results and applications related to 
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security modeling.  Relevant literature can also be found in the Computer Security Journal, IEEE 

Transactions on Software Engineering, and Computers and Security. 

 Finally, national and international standards for evaluating the security of computer systems (the 

U.S. Trusted Computer System Evaluation Criteria, the Canadian Trusted Computer Product Evaluation 

Criteria, and the European Information Technology Security Evaluation Criteria),  

contain relevant information for developers of secure systems. 


