
featureopen source

0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 57

and recurrent virus outbreaks have inflicted
substantial repair and recovery costs on busi-
nesses worldwide.3

There is no guarantee that making a sys-
tem’s source code publicly available will, by
itself, improve that system’s security. Quan-
tifiable arguments could help us make that
decision, but we don’t have good measures
for how secure systems are in the first
place.4 There is substantial literature debat-
ing the merits of open source, but much of
it is based on examining a few examples
anecdotally. Hard data and rigorous analy-
sis are scarce.

Open review of algorithms, particularly
cryptographic algorithms, has long been ad-
vocated,5 and its benefits are hardly debat-
able.6 But ultimately, Rijndael, the selected
Advanced Encryption Standard algorithm,
will operate as software and hardware. If
we can openly review the algorithm but not

the software, there is ample room for doubt
as to whether a particular implementation
is trustworthy. There are many definitions
and degrees of open source-ness.7

For this discussion, we simplify the ques-
tion to whether making source code freely
available for security review, and poten-
tially repair, is more likely to improve or de-
grade system security. Revealing a system’s
source code is not just a technical act. It has
economic and other effects that we must
consider.

Defender’s view: Closed doors
In restricting the release of source code,

producers require consumers not only to
blindly accept that code but also to trust
the compiler employed to create it. Con-
sumers thereby forfeit many abilities to en-
hance the final executable’s security. Ken
Thompson demonstrated how to create a

Does Open Source Improve
System Security?

Brian Witten, Carl Landwehr, and Michael Caloyannides,
DARPA and Mitretek Systems

An attacker could examine public source code to find flaws in a system. So

An attacker
could examine
public source
code to find
flaws in a
system. So, is
source code
access a net
gain or loss for
security? The
authors
consider this
question from
several
perspectives
and tentatively
conclude that
having source
code available
should work in
favor of system
security.

T
he current climate of functionality and performance-driven mar-
kets has created enormous code bases, which have helped drive
growth in the US gross domestic product in recent years. How-
ever, these code bases have also created an information infra-

structure whose vulnerabilities are so striking as to endanger national and
economic security.1 Distributed denial of service attacks have demonstrated
that such vulnerabilities can degrade the Internet’s aggregate performance,2

5 8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1

compiler whose subverted code you cannot
find by reviewing its source code.8 With
such a compiler, even a well-intentioned de-
veloper would unwittingly produce flawed
executables.

Having the source code available creates
opportunities for defending against both ac-
cidental and malicious faults. Although an
open source system user is vulnerable to the
tools he or she uses to generate the exe-
cutable, the choice of tools is the user’s. If
caution dictates, he or she can introduce
variability by, for example, using different
compilers to generate the executable. More-
over, automated tools can scan source code
to identify potentially dangerous construc-
tions,9 which can then be modified manu-
ally or, in some cases, automatically. Com-
pilers can also help strengthen a system’s
security without modifying source code. For
example, the Immunix Stackguard compiler
adds “canaries” that defeat many buffer
overflow attacks.10 This technique adds the
canaries into the executable code without
modifying the source code, but it requires
access to the source code.

Similarly, compilers that randomize their
output in various ways11 can defeat other
attacks that exploit specific, otherwise pre-
dictable details of compiled programs.
These approaches can remove vulnerabili-
ties at a much lower cost than manual
source code modification, but they cannot
work unless the source code is available.

Without access to the source, defenders
cannot invest in having humans review their
source code, which is still crucial to investi-
gating specific hypotheses about back

doors, race conditions, and other subtle
flaws that continue to plague our systems.

Attacker’s view: Open opportunities?
Providing public access to source code

means the attacker has access to it as well.
Relative to cryptographic algorithms, the
source code for, say, an operating system is
likely to be large and complex and will al-
most certainly contain some exploitable
flaws. On the other hand, the attacker will
in any case have access to the object code
and, with suitable resources, can probably
reconstruct any portion of it. Or, the at-
tacker could obtain a copy of the source il-
licitly, if he or she is well funded or has ap-
propriate connections to the developer.

Closed source is a mechanism of com-
merce, not security, and it relies on law en-
forcement to prevent abuses. Compilers are
not designed to provide cryptographic pro-
tection for source code, as evidenced by the
market in tools that try to obfuscate Java
bytecode as well as decompilers to defeat
the obfuscators (see the sidebar). Thus the
difference between open and closed source
models might not be so great as imagined,
serving primarily to deter those who are ba-
sically law-abiding or whose resources are
limited. A second factor, considered in more
detail later, is whether open or closed source
systems are more likely to have known but
unpatched vulnerabilities at any particular
time. The recent Digital Millennium Copy-
right Act and UCITA legislation seem de-
signed to discourage law-abiding citizens
from reconstructing source code to improve
its security but are unlikely to deter those
with baser motives.

Although we have primarily limited our
concern to source code that is available for
open review (or not), in some open source
environments the attacker might have the
opportunity to corrupt the code base by sub-
mitting subtly sabotaged programs to be in-
cluded in the public system. Of course, we
do not lack for examples in which the au-
thorized employees of prominent software
developers have inserted trapdoors and
Easter eggs in systems without manage-
ment’s apparent knowledge or consent.

Economics: Who pays the piper?
According to the old adage, he who pays

the piper calls the tune. But, in the market

C.Wang, A Security Architecture for Surviv-
ability Mechanisms, PhD dissertation, Univ. of Vir-
ginia, Dept. of Computer Science, Oct. 2000. In-
cludes survey (pp. 178–180) of code obfuscation
techniques as well as original research: ftp://
ftpcs.virginia.edu/pub/dissertations/2001-01.pdf.

Condensity, a commercial product for ob-
fuscating Java byte code: www.condensity.
com/support/whitepaper.html.

List of Java decompilers: www.meurrens.
org/ip-Links/Java/CodeEngineering.

Java Obfuscation/
Decompilation URLs

S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 59

for closed source operating system software,
the payers are many and small, and the
pipers are few and large—the payers dance
to the piper’s tune.

Closed source preserves the producer’s
economic interest and can allow recovery of
development costs through product sales.
Although certain licensing arrangements af-
ford source release in a protected manner, it
is commonly believed that restricting it
helps preserve the intellectual property con-
tained in an executable.

Once the initial version of the product
has saturated its market, the producer’s in-
terest tends to shift to generating upgrades.
Because software isn’t consumed or worn
out by repeated use, the basis for future
sales depends on producing new releases.
Security is difficult to market in this process
because, although features are visible, secu-
rity functions tend to be invisible during
normal operations and only visible when se-
curity trouble occurs.

Anyone other than the producer who wants
to invest in improving a closed source prod-
uct’s security will have a hard time doing so
without access to the source code. Some
might be willing to invest in the producer
and trust that their investments will go to-
ward the product’s security. Justifying such
investments is hard because the benefits ac-
crue to the single producer, whose incentive
is to keep producing upgrades, which in
turn tend to require renewed investment in
security.

The economics of the open source model
seems mystical—through the efforts of vol-
unteers, a stable product appears and
grows. How do these people eat? Yet, this
market’s vitality is undeniable. Part of the
answer is that the expertise individuals and
companies develop in the open source prod-
uct is salable, even if the product itself is
freely available. Another part might be that
the security market is roughly evenly split
between products and services, which has
created a community of security profession-
als capable of assisting the development and
maintenance of open source products.12

Metrics and models: Describing the
elephant

It would help to have empirical support
for this discussion to a greater extent than
we do. To decide objectively whether open

source will improve system security, we
need to at least rank order the security of
different systems (or of the same system, un-
der open and closed source conditions). But,
security is a little like the elephant of Indian
lore—the appropriateness of a measure de-
pends on the viewer’s perspective. What
kinds of measures would be appropriate?

A source of reliability—if not security—
metrics are the “fuzz” tests of Unix utilities
and services performed at the University of
Wisconsin first in 1990 and again in 1995.
The testers concluded that the GNU and
Linux utilities had significantly lower failure
rates than did the commercial Unix systems.13

Development of proper metrics for sys-
tem security is a vast topic—often addressed
but rarely with satisfying results—but it ex-
ceeds this brief article’s scope. Nevertheless,
SecurityPortal has proposed a simple and
plausible metric relevant to the case at hand.
Arguably, systems are most vulnerable dur-
ing the period after a security flaw becomes
known to attackers and before the flaw is
removed (such as by distributing a patch).
So, one measure of system security might be
this interval’s average length. Data measur-
ing this interval are hard to come by, but
an effort to characterize an open source sys-
tem (Red Hat Linux) and two closed source
systems (Sun and Microsoft) based on pub-
lished security advisories is available at www.
securityportal.com.14

The results on SecurityPortal’s Web site
show an average number of days of vulner-
ability for Red Hat Linux as 11.2 with stan-
dard deviation 17.5, based on 31 advisories.
For Microsoft, results show an average of
16.1 days with a standard deviation of 27.7,
based on 61 advisories. Sun shows an aver-
age of almost 90 days, but only eight advi-
sories were published during the year, mak-
ing statistical inference questionable.

Moreover, SecurityPortal concluded,

Red Hat could have … cut their turn around
time in half, had they only been more atten-
tive to their own community. There were in-
stances when software had already been
patched by the author, but Red Hat was slow
in creating RPM distribution files and issuing
advisories.14

Open source advocates should not be sur-
prised to find that the proprietary, central-

Security is
a little like

the elephant
of Indian

lore—the
appropriateness

of a measure
depends on the

viewer’s
perspective.
What kind of

measures would
be appropriate?

6 0 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1

ized distribution system for the open source
software seems to double the delay in field-
ing patches.

Many caveats go with this kind of data,
including

� not all flaws are equally bad;
� finding many flaws but repairing them

quickly might not be better than finding
few and taking longer to fix them;

� normalizing results from different oper-
ating systems might affect results; and

� the effectiveness of putative fixes might
differ.

Nevertheless, making such measurements
available on a routine basis could go far in
helping consumers make better-informed
purchasing decisions.

Another approach is to look at a simpli-
fied statistical model of how the open and
closed source review processes seem to
work. In the closed source case, suppose
there is a relatively fixed size set of paid
source code reviewers. They are presumably
knowledgeable and motivated. In the open
source case, there is a more heterogeneous
group of volunteers. We propose, with some
justification from previous models15 and ex-
periments,16 to use a Poisson process to de-
scribe the rate at which each individual
finds security flaws. To account for pre-
sumed differences in motivation and expert-
ise, we choose λp to represent the rate at
which a paid reviewer finds flaws and λv to
characterize the rate for volunteer review-
ers. If the number of paid reviewers is Np,

then the expected time for the paid group to
find the next flaw is simply 1/(Np λp), and
the rate for the volunteer group is similarly
1/(Nv λv). This model does not address the
different coefficients of efficiency for group
collaborations. Claims of advantages in
emergent behavior weigh against claims of
advantages of central control, however, and
we have not yet found any hard data on
which to base these coefficients. Moreover,
this model doesn’t adjust for the rate de-
creases that might be associated with deple-
tion of vulnerabilities. However, this model
should be adequate for at least beginning to
provide structure to some of the arguments
on both sides. Figure 1 gives an idea of the
potential effect of a larger group of security
reviewers, even though they might be, on
average, less expert than paid reviewers.
This simple analysis highlights that past the
point where Nv λv = Np λp, the open source
approach detects errors more quickly.
There’s a similar effect when groups of stu-
dents review security requirements.17

T oday, it seems that all software has
holes. We can draw four additional
conclusions from this discussion.

First, access to source code lets users im-
prove system security—if they have the ca-
pability and resources to do so. Second, lim-
ited tests indicate that for some cases, open
source life cycles produce systems that are
less vulnerable to nonmalicious faults.
Third, a survey of three operating systems
indicates that one open source operating
system experienced less exposure in the
form of known but unpatched vulnerabili-
ties over a 12-month period than was expe-
rienced by either of two proprietary coun-
terparts. Last, closed and proprietary
system development models face disincen-
tives toward fielding and supporting more
secure systems as long as less secure systems
are more profitable. Notwithstanding these
conclusions, arguments in this important
matter are in their formative stages and in
dire need of metrics that can reflect security
delivered to the customer.

More caveats are also necessary. There is
little evidence that people (in particular, ex-
perienced security experts) review source
code for the fun of it. Opening the source
code creates the opportunity for individuals

1
10 v

10
 =

E
[t

]

100 1,000 10,000
Nv

1
Np p

Nv v

λ

λ

λ

Np p Nv vλ λ

1

Figure 1. Expected
time to find next
security flaw (E[t])
versus number of
volunteer reviewers
in open source
community (Nv).

S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 61

or groups to understand how it works and
what security it provides, but it cannot guar-
antee that such reviews will occur. Some ven-
dors of closed source products have regulated
internal processes for reviewing and testing
software. Many will make their source code
available to qualified reviewers under non-
disclosure agreements. There is, in any case,
no guarantee that human review will find
any particular security flaw in a system of
millions of lines of code—especially not if
there is a serious effort to hide that flaw. Re-
view will always be most effective on small,
well-structured pieces of code.

Still, closed development models force
consumers to trust the source code and re-
view process, the intentions and capabilities
of developers to build safe systems, and the
developer’s compiler. Such models also prom-
ise to deliver maintenance in a timely and
effective manner, but consumers must also
forfeit opportunities for improving the secu-
rity of their systems.

Acknowledgments
This article has benefited from the comments of

anonymous referees. In addition, we thank Rick Mur-
phy of Mitretek Systems and Steve Lipner and Sekar
Chandersekaran of Microsoft, who provided helpful
reviews of a draft of this article, but who do not nec-
essarily concur with its conclusions!

Disclaimer
The views expressed in this article are those of the

authors and not the Department of Defense or
Mitretek Systems.

References
1. US Government Working Group on Electronic Com-

merce, First Annual Report, US Dept. of Commerce,
Washington, DC, Nov. 1988, pp. 1–2, www.doc.gov/
ecommerce/E-comm.pdf (current 11 July 2001).

2. L. Garber, “Denial of Service Attacks Rip the Internet,”
Computer, vol. 33, no. 4, Apr. 2000, pp. 12–17.

3. A.C. Lear, “Love Hurts: New E-Mail Worm Afflicts Mil-
lions,” Computer, vol. 33, no. 6, June 2000, pp. 22–24.

4. Computer Science and Telecommunications Board,
Trust in Cyberspace, National Research Council, Wash-
ington, D.C., 1999, pp. 185, 189.

5. A. Kerkhoffs, “La Cryptographie Militaire,” J. des Sci-
ences Militaires, vol. 9, Jan. 1883, pp. 5–38.

6. D. Wagner, B. Schneier, and J. Kelsey, “Cryptanalysis of
the Cellular Message Encryption Algorithm,” Counter-
pane Systems, Mar. 1997, www.counterpane.com/
cmea.pdf (current 11 July 2001).

7. V. Valloppillil, Open Source Software: A (New?) Devel-
opment Methodology, Microsoft Corp., Redmond,
Wash., 11 Aug. 1998; www.opensource.org/halloween/
halloween1.html (current 11 July 2001).

8. K. Thompson, “Reflections on Trusting Trust,” Comm.
ACM, vol. 27, no. 8, Aug. 1984, pp. 761–763.

9. J. Viega et al., A Static Vulnerability Scanner for C and
C++ Code, Cigital, Dulles, Va., 2000; www.cigital.com/
papers/download/its4.pdf (current 11 July 2001).

10. C. Cowan, “Automatic Detection and Prevention of
Buffer-Overflow Attacks,” Proc. 7th Usenix Security
Symp., Usenix, San Diego, 1998, pp. 63–78.

11. S. Forrest, A. Somayaji, and D. Ackley, “Building Di-
verse Computer Systems,” Proc. HotOS VI, IEEE CS
Press, Los Alamitos, Calif., 1997, pp. 67–72.

12. C.J. Wilson, “Graphiti,” Red Herring, no. 77, Apr.
2000, pp. 68–70.

13. B.P. Miller et al., Fuzz Revisited: A Reexamination of
the Reliability of Unix Utilities and Services, tech. re-
port, Computer Science Dept., Univ. of Wisconsin,
Madison, 1995, www.cs.wisc.edu/~bart/fuzz (current 11
July 2001).

14. J. Reavis, “Linux vs. Microsoft: Who Solves Security
Problems Faster?” SecurityPortal, 17 Jan. 2000, www.
securityportal.com/cover/coverstory20000117.html
(current 11 July 2001).

15. B. Littlewood et al., “Towards Operational Measures of
Computer Security,” J. Computer Security, vol. 2, no. 3,
Apr. 1993, pp. 211–229.

16. E. Jonsson and T. Olovsson, “A Quantitative Model of
the Security Intrusion Process Based on Attacker Behav-
ior,” IEEE Trans. Software Eng., vol. SE-23, Apr. 1997,
pp. 235–245.

17. R.J. Anderson, “How to Cheat at the Lottery,” Proc.
15th Ann. Computer Security Applications Conf., IEEE
CS Press, Los Alamitos, Calif., 1999, pp. xix–xxvii;
www.cl.cam.ac.uk/~rja14/lottery/lottery.html (current
11 July 2001).

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

Review will
always be most

effective on
small, well-
structured

pieces of code.

About the Authors

Brian Witten is a program manager at DARPA, where he has directed several programs
including the Information Assurance, Autonomic Information Assurance, Partners in Experimen-
tation, Survivable Wired, and Wireless Infrastructure for the Military programs. He received his
BS in electrical and computer engineering from the University of Colorado. He is a member of
the IEEE. Contact him at DARPA/ATOO, 3701 North Fairfax Dr., Arlington, VA 22203-1714;
bwitten@darpa.mil.

Carl Landwehr is a senior fellow at Mitretek Systems, working closely with the director
of Mitretek’s Information Security and Privacy Center. He provides senior technical support to
several program managers within DARPA’s Information Assurance and Survivability and Third
Generation Security Programs and assists the Federal Infosec Research Council. He received his
BS from Yale University and an MS and PhD in computer and communication sciences from the
University of Michigan. He is a senior member of the IEEE and has served as an associate edi-
tor of IEEE Transactions on Software Engineering. Contact him at Mitretek Systems, MS Z285,
7525 Colshire Dr., McLean, VA 22102; Carl.Landwehr@mitretek.org.

Michael Caloyannides is a senior fellow at Mitretek Systems concentrating on com-
puter forensics, encryption, and privacy technical problems. His interests include information
security and telecommunications. He received a BSc and an MSc in electrical engineering and a
PhD in electrical engineering, applied mathematics, and philosophy, all from Caltech. He holds
one US patent on high-speed modems and is a senior member of the IEEE. Contact him at
Mitretek Systems, MS Z285, 7525 Colshire Dr., McLean, VA 22102; micky@IEEE.org.

