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Abstract. A strong factor in the early development of
computers was security – the computations that moti-
vated their development, such as decrypting intercepted
messages, generating gunnery tables, and developing
weapons, had military applications. But the computers
themselves were so big and so few that they were rela-
tively easy to protect simply by limiting physical access
to them to their programmers and operators. Today, com-
puters have shrunk so that a web server can be hidden in
a matchbox and have become so common that few peo-
ple can give an accurate count of the number they have
in their homes and automobiles, much less the number
they use in the course of a day. Computers constantly
communicate with one another; an isolated computer is
crippled. The meaning and implications of “computer se-
curity” have changed over the years as well. This paper
reviews major concepts and principles of computer se-
curity as it stands today. It strives not to delve deeply
into specific technical areas such as operating system
security, access control, network security, intrusion de-
tection, and so on, but to paint the topic with a broad
brush.

Keywords: Computer security – Vulnerability – Secu-
rity principles – Security policy – Security mechanisms

1 What is computer security?

Secure has its etymological roots in se – without, or apart
from, and cura to care for, or be concerned about [1]. So,
in the broadest sense, we might say a computer is secure
if it is free from worry and if it is safe from threats, and
computer security is the discipline that helps free us from
worrying about our computers. Of course one might be
foolishly secure, simply out of ignorance (this is another

of the dictionary definitions for the word). In fact, peo-
ple have worried about the security of their computers for
many years, and computer security concerns are a signifi-
cant factor today in the development and application of
computer technology throughout society.

Today, securing a computer for an e-commerce ap-
plication may mean first assuring that the system will
be available for use and will deliver uncorrupted infor-
mation. Assuring the confidentiality of the information
delivered may not be important at all if the system is sim-
ply acting as an online catalog of merchandise, though of
course if it is used to accept credit card numbers, they will
require protection. This emphasis reverses the traditional
focus of some military and intelligence organizations on
preserving confidentiality.

In military systems, the first generation of computer
security measures aimed to prevent security violations,
and researchers developed technologies that could be
counted on to prevent computers from leaking sensi-
tive data. The market adopted few of these technologies,
however, and a second generation of security technolo-
gies, characterized by firewalls and intrusion detection
systems, aimed to at least detect and limit security vi-
olations that could not be prevented. Efforts are now
underway to develop a third generation of security tech-
nologies and architectures that will have the ability to
tolerate attacks and continue to provide critical func-
tions, albeit in a degraded mode, while an attack is in
progress.1

We view computer security as a narrower topic than
information security, which would cover all forms of infor-
mation storage and processing. Nevertheless, our focus is
not so much on securing computers themselves (against
theft or other physical threats, for example), but on se-

1 For the characterization of history, I am indebted to Jay Lala
of the U.S. Defense Advanced Research Projects Agency.
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curing the data that they receive, store, and retransmit,
and securing the processes they perform on those data.
At the same time, we recognize that security is a system
property and that it is a “weak-link” property. The easi-
est path for an enemy to get information from a targeted
system may be to steal a backup tape, retrieve hard-copy
output from a dumpster, or simply steal the victim’s lap-
top. Anyone concerned about overall information security
for the system must not ignore such possibilities, and
indeed there are technical countermeasures for some of
them. For example, we may encrypt the backup tape and
secure the encryption key so that the backup tape is of
no practical use to the enemy, or we may encrypt the en-
tire hard drive of the laptop. This paper introduces the
basic terminology and concepts of computer security and
provides a general background for the other papers in this
inaugural issue of IJIS.

2 Security policy

Security policy provides the rules of the game in computer
security, and this fact explains its prominence, which of-
ten surprises newcomers. A policy is simply a set of rules
defined to meet a particular goal, in this case to secure
a computer or the information it processes. A computer
without a security policy is like a society without laws;
there can be no illegal acts in the later and no security
violations in the former. Events like the “I-LOVE-YOU”
virus incident [2], in which the likely perpetrator went un-
prosecuted because there were no laws against his acts in
his country, support this simile, and in fact are stimulat-
ing lawmakers worldwide.

The local legal and regulatory framework can itself
play a significant role in the security policy for a computer
system. A nation or a collection of nations may impose
policies on the protection and distribution of informa-
tion that motivate elements of a system’s security policy.
The need for forensic information to prosecute computer
crimes and the European Union’s privacy directive [3]
provide current examples, as do regulatory policies on the
protection and distribution of healthcare information in
the U.S. [4].

Laws may also discourage the development of secu-
rity measures in computer systems. The U.S.’s Digital
Millenium Copyright Act [5], by making any attempt to
circumvent technical access controls on copyrighted ma-
terial illegal, discourages the development of technically
strong controls. In the long run, it may also encourage the
development of technology to detect violations of the Act
and support successful prosecution of violators.

2.1 Security, privacy, and confidentiality

Security, privacy, and confidentiality are sometimes used
interchangeably, but for our purposes it is important to
distinguish them. Security, as we have already discussed,

is the most general of these terms and may, depending
on a stated policy, incorporate privacy or confidentiality
concerns. Privacy, when used carefully in the context of
security policies, connotes matters that can be kept en-
tirely to oneself, whereas confidential matters are those
we may entrust to others with the understanding that
they will not be further disclosed except in accordance
with some implicit or explicit policy. I may entrust my
doctor, lawyer, or banker with certain confidential infor-
mation that is to be disclosed only under proper author-
ity; other matters I may keep entirely private. In this
sense, automated systems are generally concerned with
preserving confidentiality, at most. The meaning of a pri-
vate key in a public-key cryptosystem preserves this dis-
tinction, in that disclosing a private key to anyone renders
it no longer private. However, many discussions of pri-
vacy in the popular technical press use the word in a sense
much closer to confidentiality. For example, records of
video rentals are considered “private” in the U.S., in that
the video store may not disclose them, but of course the
video store has the record.

2.2 Commercial, military, and other policies

Security policies will depend on the concerns of the owner
of the system and the owner of the information processed
by it. For many years there were two rather distinct com-
munities concerned about computer security: commercial
and military. Commercial concerns naturally focus on the
flow and protection of financial assets. The desire to pre-
vent, detect, and prosecute commercial fraud motivated
both security policy and technology development in this
area and led to controls on application-level programs, so
that only authorized individuals could invoke certain op-
erations, and to the generation and preservation of audit
trails, so that potential fraud could be identified and the
perpetrators identified, prosecuted, and convicted. This
class of commercial systems benefits in general from the
ability to count its losses and so to determine on a fairly
rational basis how much to invest in preventive measures.

The military world2 suffers from the difficult problem
of deciding how to assess in financial terms the damage
done by a particular disclosure of sensitive information.
A disclosure might compromise an expensive intelligence
collection system or a particular military operation and
have a tremendous cost in dollars and lives, or it may
cause little actual damage. This fact makes it much more
difficult for the military to determine how much to in-
vest in mechanisms to prevent such disclosures. For many
years, military concerns focused primarily on preserving
the confidentiality of sensitive information. Security poli-
cies designed to protect such information existed long
before computers, but placing sensitive information into
computer systems opened many potential vulnerabilities

2 For purpose of this paper, we lump intelligence systems with
military systems.
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for its disclosure or corruption. Military investment has
fueled much of the research and development in this area
since its inception, though perhaps a declining fraction
over the past decade or so, as commercial interests and
concerns have escalated. The focus of this research has
most often been on securing the lower levels of the in-
frastructure – the operating systems, for example, rather
than the applications, both because of the diversity of
military applications and the belief that securing the ap-
plications without securing the infrastructure would be
like building on a foundation of sand.

It is worth noting that the commercial world also has
assets that it wishes to protect against disclosure to its
competitors and on which it may be difficult to place
a specific dollar value. Examples include research and de-
velopment results, product plans, and corporate financial
information. Thus the distinction between military and
commercial concerns and policies is not always sharp.

In addition to conventional military and commercial
security policies, there are other areas in which secu-
rity policy definition is crucial and can be contentious.
Healthcare information is a clear example: patients may
have a strong interest in maintaining the confidentiality
of all or some aspects of their medical records, yet they
may wish to disclose much or all of it to the physician
treating them, and they may have to disclose portions
of it to an insurance company for reimbursement, or to
a pharmacy in order to fill a subscription. Government
regulations may constrain how such information is to be
protected and how it may flow [4]; and the security poli-
cies for such systems must take these regulations into
account. Census information and data generated and pro-
cessed during elections require similar specialized poli-
cies and protections. Confidentiality policies for the vast
quantities of data that are typically recorded by commer-
cially interested parties as individuals use the Internet for
web browsing and e-commerce are largely unstated and
even where stated, compliance is largely voluntary. As
is frequently the case with both healthcare and financial
data, the data collected concern specific individuals and
can be linked to them, but the collector owns the data and
controls the security policies applied to them.

Finally, as computers are increasingly used as criti-
cal components in control systems, security policies need
to take account of the consequences of delayed or denied
service as well as corruption or exposure of information.
For at least 40 years, computers have played key roles in
military systems, but the early systems were isolated and
driven to meet specific functional requirements that were
divorced from security requirements. Today, computers
are highly networked and are part of mission-critical ac-
tivities not only in military systems, but in a broad spec-
trum of industries and throughout critical infrastructures
that control energy distribution, transportation, water
systems, and virtually every aspect of economic life. Secu-
rity policies must consequently take the role of the system
within the enterprise into account.

3 Bounding the system

A security policy has a domain of application that may
transcend many individual computer systems. In securing
any particular system, a key first step is to identify what
is in the system and what is not. This activity defines the
security perimeter for the system and limits the scope of
what needs to be protected and what can be controlled. If
we limit this discussion strictly to computer security the
problem may seem easier, since presumably the perimeter
of an individual computer is easy to see.

But today, individual computers are invariably con-
nected to other computers, either intermittently or per-
manently, and exchange information with them, and it
is this information and the functions of these intercon-
nected systems that we want to secure. Further, the con-
figuration of individual client machines that are directly
controlled by users can have a significant effect on sys-
tem security. For example, a user may install a modem on
a desktop PC connected to an internal corporate network
in order to gain access to that system from a residence.
While perhaps well justified in the user’s mind, this act
opens a path for an intruder to enter the corporate net-
work without going through the carefully configured fire-
wall that the corporation uses to protect itself from out-
side attacks.

Further, computers increasingly exchange informa-
tion that is actually intended to be executed, and pos-
sibly to be installed permanently, on the other systems
with which they are communicating. The security impli-
cations of the free exchange of programs and program
fragments are significant, as reflected by the recently re-
leased U.S. Department of Defense policy on the use of
mobile code [6]. When mechanisms intended to improve
a system’s security posture, such as virus scanners and
system administration tools, use mechanisms like these to
distribute and install patches and updates, it becomes dif-
ficult to simply forbid the use of these mechanisms and
essential to verify the source and the integrity of the infor-
mation received.

One of the purposes of defining a system’s secu-
rity perimeter is to distinguish intruders from legitimate
users. An intruder is an individual who crosses a sys-
tem’s security perimeter without authorization. Since
an intruder may gain access to a system by stealing
a legitimate user’s identity, and the intruder’s behavior
on the computer system may be difficult to distinguish
from an ordinary user, detecting such intruders is a hard
problem [7].

4 Vulnerability, threat, and risk

A vulnerability is a weak point in a computer system. It
may be a flaw in a piece of software that runs in a privi-
leged mode, a poorly chosen password, or a misconfigured
rule enforced by a firewall. It could even be a depen-
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dence on a service or piece of information external to the
system. Vulnerabilities exist in all of today’s commercial
operating systems; new vulnerability announcements ap-
pear regularly in bulletins from vendors and from incident
response organizations such as the Computer Emergency
Response Team [8] around the world.

A threat is an intent to inflict damage on a system.
Different individuals and groups have different abilities to
carry out a threat (through attacks), and the determin-
ation of the nature of threat against which a system must
be defended should drive the decisions about its security
architecture – its structure from the security perspective.
The threat posed by a legitimate user of a system is re-
ferred to as the insider threat. Precisely because they
have some degree of authorized access to a system and
typically can gain a detailed understanding of how their
systems operate without arousing suspicion, the insider
threat is a major concern for many systems.

The risk assumed by the owner or administrator of
a system is the likelihood that the system will not be
able to enforce its security policy (including the continu-
ation of critical operations) in the face of an attack. Thus
risk is a function of both the exposure of the system’s
vulnerabilities in the context of its security architecture
and the level of threat manifested against the system at
a given time. As such, its risk can change over time even
though an organization’s system and operations have not
changed at all. In particular, the decision of a particu-
lar group to target a system will increase that system’s
risk, as will the release of information about a previously
undisclosed vulnerability in a piece of software that that
system uses, and, even more, the release of a script that
makes the exploitation of the vulnerability easy [9].

Organizations can take different approaches toward
risk; a risk avoidance philosophy focuses on removing
every vulnerability and defeating every attack. The adop-
tion of widely used and inherently vulnerable systems
has made such an approach untenable for most systems,
causing them to adopt what they call risk management
approaches, in which a degree of risk is accepted as nor-
mal and more attention is focused on measures to deal
with successful attacks. To reduce the risk posed by in-
siders, for example, an organization may partition roles
and privileges within its computer systems so that no sin-
gle individual can authorize a large financial transaction.
Of course, in some cases, the adoption of a risk manage-
ment strategy is hard to distinguish from what one might
simply call risk acceptance.

5 Security properties

For many years, the conventional definition of computer
security required that the computer system maintain
three properties:

– confidentiality: assuring that computer-based infor-
mation is not disclosed without proper authorization;

– integrity: assuring that computer-based information is
not modified without proper authorization; and

– availability: assuring that computer-based informa-
tion is accessible to legitimate users when required.

More recently, it has become common to add two more
properties:

– authentication (or sometimes identification and au-
thentication): assuring that each principal is who they
claim to be; and

– non-repudiation: assuring that a neutral third party
can be convinced that a particular transaction or
event did (or did not) occur.

Authentication is really a prerequisite for the first three
properties, since without proper authentication it is not
possible to determine whether a disclosure or modifica-
tion has been properly authorized. Non-repudiation is pri-
marily of interest in the context of communication proto-
cols, particularly for legal or financial transactions. Non-
repudiation, when offered as a service that can be provided
to assure the origin, transport, delivery, etc., of a message
usually depends on the use of cryptography, and the com-
promise of one of the keys involved in providing the service
could nullify its guarantees in a particular case.

6 Security principles

If you want to keep a secret, don’t tell anyone and don’t
write it down. Or, as Benjamin Franklin’s Poor Richard
put it, “Three may keep a secret, if two of them are
dead [10].” Some security principles like these carry over
to the world of computer security, where they can affect
the design of security functions provided by a system,
the user interfaces used to invoke those functions, and
the way those functions are implemented within the com-
puter system. This section reviews a few such principles
that have proven relevant to computer security. When
considering a particular point of design, some of these
principles can conflict, requiring an informed choice of
tradeoffs.

6.1 Accountability

People behave better (or at least more in accordance with
laws or policies) if they know that they can later be called
to account for their actions. For computer systems, this
observation has several implications: first, adequate au-
thentication mechanisms are needed so that responsibil-
ity can be conveyed from a human principal to a process
within the computer system. Second, functions within the
computer system that are controlled by the security pol-
icy must be authorized. Since the authorization decision
typically must take into account the identity and role of
the requestor, authentication is a prerequisite for proper
authorization decisions. Finally, security critical actions
need to be audited so that, after the fact, the responsibil-
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ity for initiating the action can be reliably traced back to
an individual.

Implementing authentication, authorization, and au-
dit procedures in a way that could, for example, provide
the basis for a criminal prosecution is a significant tech-
nical challenge that spans many layers of a computer sys-
tem. Audit trails generated by recording the invocation
of operating system functions, for example, are often too
voluminous and too fine-grained to be of very much use
in monitoring system activity for security violations and
can only with difficulty be used to reconstruct the de-
tails of a security violation detected through other means.
An audit trail generated by the application itself can be
more effective, since the application presumably captures
the semantics of the security sensitive operation. How-
ever, the application must rely on the file system and
the operating system to safeguard the audit trail against
fraudulent modification.

6.2 Least privilege

The principle of least privilege asserts that each process
(or other entity) in a computer system should be granted
only those privileges needed for it to accomplish its desig-
nated function [11]. In some respects, this is a correlate of
the need-to-know principle in systems to protect classified
information – even though an individual may have the
clearance for a set of information, the information should
only be provided if that person has a specific need to know
it. Otherwise, a secret is being revealed to another indi-
vidual, increasing risk, without any particular benefit.

Implementing this principle in computer systems al-
ways involves tradeoffs. Perfect application of the least
privilege principle would require that each process could
read and write only those files, or those parts of particu-
lar files, essential to its particular purpose, for example.
Simply defining this policy for each program in a sys-
tem would be a significant burden, and the mechanisms
needed to enforce it would likely be cumbersome. Further,
there would be a constant flow of policy changes as pro-
grams were revised or added new functions. On the other
hand, today this principle seems largely forgotten or at
least ignored. Typically, every application run on a per-
sonal computer has full access to the entire file system
and can cause great damage to it, either accidentally or
maliciously. Many viruses exploit violations of this prin-
ciple in order both to damage systems and to propagate
themselves.

6.3 Minimize the variety, size, and complexity
of trusted components

Any component of a system, be it human or computer,
that has the authority or ability to compromise the secu-
rity of a system must be trusted not to do so. To establish
that a component is worthy of such trust requires effort,

and if the component is a computer program or a piece
of hardware, the effort is generally proportional to its size
and complexity. Minimizing the variety, size, and com-
plexity of the trusted components in a system design can
reduce both assurance cost and risk, because it is easier to
assure that they are correctly specified and implemented.
This principle aligns well with the least privilege princi-
ple, and is fundamental to the Trusted Computer System
Evaluation Criteria (TCSEC) [12], which provide some
of the earliest and strongest guidance to those trying to
build computer systems to meet strict security (and par-
ticularly confidentiality) requirements. The highest TC-
SEC evaluation levels require the most stringent mini-
mization of the Trusted Computing Base – that portion
of a hardware/software system responsible for enforcing
security properties.

Some care is required in the application of this princi-
ple, however, for it can lead to performance penalties. If,
for example, a design centralizes all security checking in
one component that runs in a separate, protected domain,
it may be very frequently invoked and require a large
number of domain-crossing operations. Centralized, gen-
eral purpose security kernels [13] generally suffered from
this problem [14]. Current work to develop language-
based security mechanisms aims for simple enforcement
mechanisms, but ones that are distributed throughout
the program [15, 16].

6.4 Default security

This principle says that system defaults should be ar-
ranged with a preference for secure operation. According
to this principle, a computer system should be configured,
at delivery, so that its operation will be secure and that
relaxing the security controls should require a conscious
act on the part of an administrator. Systems that come
with widely known default user IDs and passwords al-
ready installed, or with defaults that permit system wide
sharing of all files, or administrator privileges for every
user violate this principle. Default security could be un-
derstood as an application of the least privilege principle.

6.5 Defense in depth

This is the “don’t put all your eggs in one basket” prin-
ciple. It recognizes that security mechanisms may be im-
perfect and fail; consequently designs should employ mul-
tiple, diverse, and complementary mechanisms, so that
attacks that exploit the failure of one mechanism will be
stopped by a different one. This principle may seem to
be at odds with minimizing the variety and complexity of
trusted functions, and indeed the management of diverse
defensive measures poses a significant problem to system
administrators today. However, the limited scope of many
security mechanisms, as well the potential that they con-
tain flaws, makes defense in depth a prudent principle for
today’s computer systems.
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7 Security mechanisms

The need for competing interests to share a common set
of computing resources lies at the heart of many com-
puter security requirements. Although a personal com-
puter may be owned and operated by a single individ-
ual, its operating system, file system, and applications in
effect represent a variety of competing and cooperating
interests.

7.1 Defining domains

The primary security mechanisms used to construct com-
puter systems that can enforce specific security policies
effectively set up fences (and gates) within computers.
A fenced area in a computer system corresponds roughly
to a domain, which we define as a collection of data and
a set of authorizations for manipulating that data within
a computer system [17, 18]. When a system boots up,
establishment of an initial domain that meets security
requirements is crucial; witness the many viruses that at-
tempt to install themselves in such a way that they will
gain control whenever the system is restarted. In addition
to mechanisms for creating domains, mechanisms to con-
trol communication between domains are required.

Domains can be built using hardware features of the
underlying computer system, using software only, or, as
is usually the case, some combination of software and
hardware. Mechanisms to control access to privileged in-
structions, such as those controlling hardware level input-
output, changes to the privilege state of the machine,
and the mapping from virtual to physical memory ad-
dresses are key to defining domains at the most basic
level. The development of sophisticated mechanisms for
defining protection domains, including hardware support,
is part of the history of the development of time-sharing
systems, with the MULTICS hardware and operating sys-
tem designs [19, 20] representing a high point. The Intel
80286 microprocessor and its successors actually incorpo-
rated scaled-down versions of mechanisms developed for
MULTICS, but most operating systems and applications
developed for it have exercised relatively few of the fea-
tures provided.

Separation that is based only on software-implemented
mechanisms tends to be somewhat more fragile than
separation that has hardware assistance, because if the
code, once initiated, is not prevented by the hardware
from accessing other domains, then some certification is
needed that each piece of code that is executed will not,
in fact, violate the intended domain boundaries.3 This
approach was reasonably successful in some Burroughs
machines [21], and has reappeared in current Java lan-
guage systems, which attempt to certify that a program

3 Of course hardware-protected domains depend on software to
properly set up the data structures on which the hardware bases its
enforcement, but this is a more restricted problem.

of Java bytecode is safe to run before dispatching it. As
the introduction of lightweight processes and threads has
weakened the boundaries between computations in order
to reduce the time needed to swap contexts, methods
for introducing inline checks to assure security proper-
ties have gained interest, as reflected by the work of
Wahbe et al. [15] on software fault isolation and Schnei-
der [22] on security automata. Certifying code before it
is run has also gained interest, as reflected by work on
proof-carrying code [23] and static flow analysis [24] of
computations.

7.2 Linking users with domains

As we have seen, security requires that actions be at-
tributable to individuals. This principle leads to a re-
quirement for mechanisms that link users and domains.
Identification (the user asserting who she/he is) and au-
thentication (providing evidence that the assertion is
valid) are the processes needed to establish this link. Pro-
viding a user ID and password continues to be the most
common method for identification and authentication,
but the use of tokens (smart cards or other devices that
support challenge/response protocols, for example) and
biometrics for these purposes is growing. These different
forms of authentication depend on three factors: some-
thing a user knows (a password), something a user has
(a token) and something a user is (a fingerprint, iris scan,
or other biometric). In general, the more factors provided
in an authentication, the stronger the authentication is
considered to be, though of course the strength of the par-
ticular factors and mechanisms involved should be taken
into account.

A key element in an authentication process is that
there is a trustworthy path between the source of the au-
thentication data and the decision-making component –
if an untrustworthy component can either introduce or
collect information that is crucial to the authentication
process, authentications could be spoofed. In order to
foil eavesdroppers, some authentication protocols incor-
porate a challenge–response sequence in which the correct
response differs for each authentication.

Today, an authentication process typically succeeds
or fails – the level of evidence presented is not usually
captured or available for input to subsequent policy de-
cisions. The development of public-key infrastructures in
which certificates (certified public keys) are distinguished
based on different levels of authentication of the individ-
ual by the issuing organization, or by different levels of
confidence in the issuing organization, could change this.

Once an individual identity is linked with a domain,
the activities of programs executing in that domain typ-
ically inherit the privileges of that user. It is worth noting
at this point that if a user ID is shared by several different
people, the link between the user and the domain is sub-
stantially weakened. For example, it may be convenient to
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set up a “sysadmin” ID that has full privileges for the sys-
tem and is to be shared by several system administrators.
The ID exists so that administrators can conduct routine
tasks from a less privileged account and thereby be less at
risk if they should make a mistake or invoke a malicious
program. Nevertheless, it will be quite difficult to identify
which individual has taken a particular action.

7.3 Authorizing operations

Once a domain is created and linked to a user, it becomes
possible to decide whether an attempt by a program ex-
ecuting in that domain to gain access to a particular re-
source is permitted or not – whether a given access is
authorized. A reference monitor [25] is a component that
decides, based on some data structure embodying a secu-
rity policy, whether a given reference is authorized under
that policy. If the object is a file, for example, it may have
an associated access control list that specifies which users
are permitted to read, write, or execute that file. When
a program attempts to open a file for reading, the ref-
erence monitor would be invoked to determine whether
the user associated with the requesting domain is autho-
rized to perform the requested operation. If so, the file is
opened and the operation proceeds; if not the operation is
denied and an error of some sort is reported.

To be effective, a reference monitor must be able to
mediate every access request (complete mediation), it
must be small and simple enough so that there is high
assurance that it performs its functions correctly (cor-
rect), and it needs to be able to protect itself from be-
ing corrupted (tamperproof). These requirements [25]
typically lead to a small, centralized reference monitor
that operates in a domain separate from the request-
ing program. Such designs also incur frequent crossing of
domain boundaries, raising performance issues. Recent
research [22] seeks to overcome these problems by hav-
ing a post-processor insert the reference monitor checks
throughout the code to be executed. This approach
avoids the domain-crossing overhead, but requires high
confidence in the mechanisms used to determine what
checks to insert and in assuring that all code executed has
been modified in this way.

Authorization policies and mechanisms typically exist
at a variety of levels within a computer system. A login
process may determine whether a given user is autho-
rized to use the system at all, the file system can decide
whether the logged-in user is authorized access to par-
ticular files, and an application such as a database man-
agement system may decide which fields of which records
in a file the user may view. If the user can gain read
access to the files used by the database without going
through the database application, the database’s secu-
rity controls are ineffective – the database fails to achieve
the status of being a reference monitor for its data be-
cause its mediation is not complete. So, it is critical that
the developer who wishes to enforce application-specific

security controls understand the context in which the ap-
plication will execute and the operation of the underly-
ing authorization mechanisms in the operating system.
The development of role-based access control policies and
mechanisms [26] represents an attempt to organize the
complexity of application-based policies and to associate
access privileges with job-related functions (roles) rather
than individuals (users). Users can then be authorized to
assume certain roles that carry with them complex, pre-
specified sets of application-specific authorizations.

Network security is beyond the scope of this paper,
but we note in passing that firewalls implement autho-
rization policies on the users of a computer system as
well. The firewall may permit or prohibit traffic to or from
particular ports and addresses. Similarly, filtering soft-
ware operating on a user’s computer tries to play the role
of a reference monitor with respect to browser access to
websites, barring access to sites that violate the policy
represented by the software vendor’s filter list.

Some security policies, such as those that call for cer-
tain restrictions on information flow among domains or
objects within computer systems, cannot be enforced pre-
cisely by authorization mechanisms like reference moni-
tors [27]. In practice, however authorization mechanisms
are used to enforce an approximation of such policies.

7.4 Auditing operations

Audit logs are broadly useful for system administration
and maintenance in case of software or equipment fail-
ures. Their use in computer security raises different is-
sues, in that they can be an important link in assuring
accountability for security-relevant actions.

Normally, one doesn’t expect system users to attempt
to turn off or corrupt audit logs, but if an intruder gains
access to a system and wishes to cover his tracks, defeat-
ing the audit mechanism will be as important to him as
avoiding surveillance cameras is to an ordinary thief. The
audit mechanism itself, then, must be able to resist at-
tacks. There is an apparent conundrum here: if we could
protect the audit mechanism, couldn’t we protect the en-
tire machine? And if we can’t protect the audit mech-
anism, what good is it? In fact, not all intruders will be
aware of or knowledgeable enough about security audit
mechanisms to disable them. Moreover, there are mech-
anisms, such as generating audit trails on a write-once
device, or sending it to a remote, protecting machine, that
can make it very hard for an intruder to destroy the audit
log, even if she manages to prevent further writes to it.

The real difficulties with security audit arise in iden-
tifying the events worth auditing and preserving them
in a way that they can be reviewed effectively. Auditing
done at the level of the operating system can be consis-
tent, but will likely consist of a huge record of relatively
tiny events. Such logs can be used to reconstruct an in-
truder’s activities once the intrusion has been identified,
but reviewing the log to determine whether an intrusion



10 C.E. Landwehr: Computer security

has occurred or not is likely to be impractical. Auditing
conducted at the level of an application makes it easier
to identify the meaning of a sequence of system calls, but
each application will generate its own particular kind of
audit log. Nevertheless, this is probably the more promis-
ing avenue to pursue. Today, security audit logs are prob-
ably most useful in keeping honest people honest, and
secondarily as a source of input to automated intrusion
detection systems.

7.5 Cryptography

A cryptographic algorithm transforms cryptographic key
and readable (plaintext) data into cyphertext that can
only be understood by applying another (possibly the
same) cryptographic key and crypto-algorithm to it. If
the keys and algorithms are the same, we have a symmet-
ric or secret-key crypto system. If the algorithm involves
two different keys, one for enciphering and the other for
deciphering, we have an asymmetric or public-key algo-
rithm. Public-key algorithms have the benefit that one of
the two keys can be openly broadcast, and as long as the
other key is kept private, information enciphered under
the public key can be deciphered only by the holder of the
private key. Further, information enciphered under the
private key can be deciphered by anyone, but can have
been generated only by the holder of the private key. This
feature can be used to generate a digital signature, bind-
ing the holder of the private key to the contents of a docu-
ment. In general, public-key algorithms are much more
computationally intensive than private-key algorithms,
so they are usually applied only to relatively small pieces
of data (such as the keys for symmetric algorithms).

The past decade has seen increasing application of
cryptography to computer security problems. Today,
some commercial operating systems offer the user the
option of keeping the entire hard drive encrypted, for ex-
ample. Taking advantage of this feature offers the user
some protection against the theft of a hard drive or
laptop, but can also make loss of the encryption key
a catastrophe.

Cryptography is probably finding its widest use to-
day (and perhaps its widest use in history) in securing
and validating information in e-commerce applications.
Secure sockets layer (SSL) and transport layer security
(TLS), used to encrypt business transactions conducted
over the World Wide Web, rely on public-key cryptosys-
tems to generate and communicate a shared session key
that is used with a private (symmetric)-key cryptosys-
tem to prevent eavesdroppers from stealing, for example,
credit card numbers in transit over the Internet. The
protocols do nothing, however, to secure the computer
systems at either end. As Gollman [28] and others have
observed, cryptography can transform a communication
security problem into a key management problem. If the
key management problem is simpler than the communi-
cation security problem, this is a benefit. However, the

question of protecting the key, if it is stored on a com-
puter, brings us back to the domain of computer security
mechanisms.

Cryptographic mechanisms are finding their way into
intellectual property protection schemes [29] and a var-
iety of other applications. In each case, the security of
the scheme overall must rest on the secrecy of the key to
some cryptographic algorithm. If protecting this key can
be made easier than protecting an entire operating sys-
tem, we will have realized a net gain in security. It seems
increasingly likely that if public-key infrastructures be-
come widespread, there will be a significant demand for
tokens such as smart cards that can store a user’s pri-
vate keys and encrypt data using that key as well, so that
the private key never leaves the token. Although tokens
are themselves vulnerable to attack, they are probably
less vulnerable than the average operating system. They
can be constantly with the user, and a token can be con-
structed to authenticate its user, so the effect of theft is
reduced.

8 Assurance

When security mechanisms work properly, they should
be invisible, or nearly so, to their users. If they get in
the way when there is in fact no security problem, people
will find a way to work around them or will at least stop
paying attention to them. The dialog box that pops up
too frequently ceases to be read, or even thought about,
by its respondent. The implication is that it can be very
difficult to distinguish a situation in which the security
mechanism functions properly and no security violations
are occurring and a situation in which the security mech-
anism is simply not working. How does the user of a cryp-
tographic device have confidence that the stream of bits
emerging from it has in fact been encrypted using the in-
tended key?

The answer is that she relies on the assurance sup-
plied by the crypto provider that the device functions
as specified. Providing this assurance for a straightfor-
ward, single-purpose hardware encryption device is hard
enough; providing it for a computer system is much more
challenging. In general, assurance that a program or de-
vice functions as intended can rest on three kinds of
evidence: evidence that the device was built by well-
trained, motivated, and knowledgeable people; evidence
that the process used to build the device is sound and
when properly followed will produce a device that meets
its specification; and evidence from testing and analyz-
ing the product directly. All of these kinds of evidence
presuppose that the desired behavior of the device (at
least, for our purposes, from a security standpoint) is well
specified.

The strongest of these three kinds of evidence comes
from examination of the actual device. If the mechan-
isms work properly, it doesn’t really matter who built it
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or what process they used. However, today these mech-
anisms are frequently computers, and both the hardware
and software may be quite complex. Any direct exam-
ination of the artifact produced will either not be ex-
haustive or will be extremely labor intensive. Further, the
standard of specification required to resolve whether the
device exhibits the proper security behaviors is likely to
be far beyond commercial practice for ordinary software
and hardware. For the highest level of assurance, formal
models of the security policy that the machine is intended
to enforce, as well as corresponding formal specifications
for the enforcement mechanisms, may be required [30].

The first general approach to dealing with the security
assurance problems for general-purpose computing sys-
tems is documented in the U.S. Trusted Computer System
Evaluation Criteria (the “Orange Book”) [12]. This pio-
neering work laid down a structure that grouped both se-
curity mechanisms and assurance requirements into a set
of increasingly rigorous levels. The intent was that the
government (and other organizations) would specify the
level of security they required in their computer systems
according to these levels. At the same time, computer
vendors would submit their systems to the government
for evaluation, with the results to be published and then
used to determine which systems met procurement re-
quirements. Although carefully thought out, the plan
turned out to be both expensive and time-consuming for
both the government and the vendors. See [31] for a thor-
ough treatment of criteria and evaluations.

Subsequently, other nations developed different sets
of evaluation criteria and processes that explored slightly
different approaches, for example splitting the require-
ments for security function and assurance, and using com-
mercial firms to conduct product evaluations. The result
has been the development of the “Common Criteria” ap-
proach [32]. Several nations have now adopted this ap-
proach and agreed to recognize each other’s evaluations,
at least up to a specified level of assurance.

The Common Criteria approach calls for the develop-
ment of a Protection Profile to capture a common set of
security requirements (e.g. for a firewall) and a Security
Target, which is the baseline against which a particu-
lar product (the Target of Evaluation) is judged. In this
way, a product developer can specify, and pay to have his
product evaluated against, a Security Target that could
conform to several different Protection Profiles. The cus-
tomer can specify or select a Protection Profile that meets
its needs and identify which products could satisfy them
according to the Security Targets that have been success-
fully evaluated against.

9 System considerations

That security is a system problem has never been more
apparent than it is today. A variety of e-mail lists and
websites announce vulnerabilities and corresponding

patches in a steady stream. The shortage of system ad-
ministrators with security training has prompted the U.S.
government to organize new programs of incentives to in-
duce universities to develop training courses and students
to enroll in them.

It is easy to argue that the bulk of reported security
incidents today are the consequence of inadequate sys-
tem administration. Indeed it is a daunting task to be
faced with managing the security of a typical office envi-
ronment where individual users can modify the hardware
and software configuration of their client machines, each
new software release can be expected to bring a new crop
of vulnerabilities, and each new week a new set of viruses.
Recent reports [9] document that the bulk of incidents
reported to the CERT occur after scripts are released
that automate the exploitation of particular vulnerabili-
ties, and that patches for these vulnerabilities have been
available well before the scripts are distributed. Admin-
istrators simply have not been able to assure that these
patches are installed promptly on the machines that need
them.

Managing the configuration of a collection of systems
includes the hardware as well as the software. Even if an
institution’s Internet connections are protected by care-
fully configured firewalls, the existence of a machine be-
hind the firewall with a forgotten modem attached to it
can open the system to a dangerous attack. The only real
way to manage this kind of problem is through a combi-
nation of software tools to probe the configuration reg-
ularly for vulnerabilities [33], administrative procedures
to assure that changes to the configuration are well un-
derstood and in accordance with overall security policies,
and training to assure users are aware of security issues
and the consequences of unsafe practices. Even so, as the
I-L-Y virus incident showed graphically [2], the defenses
provided by most systems to a targeted attack that de-
viates even slightly from known patterns are startlingly
weak.

Software is increasingly delivered to systems in small
units, downloaded from Internet sites. Application-level
macros, scripts, plug-ins, Java applets, Active-X controls,
Javascript, and more stream into a client through a web
browser, are installed, and run. Because this mode of op-
eration is routine for many users, and because the inte-
grated application packages they use often lack internal
barriers or security controls, these users are vulnerable to
a wide variety of attacks if their operating systems func-
tion perfectly. Perhaps we should be more surprised at
how few incidents there are, rather than the costs of the
ones that occur. In any case, our growing willingness to
accept and install software with relatively weak assurance
of its pedigree or value makes the risk profile of the cur-
rent computing environment quite different from what it
was 20 years ago. The combination of worldwide network-
ing, mobile code, and integrated applications is a volatile
mix that can allow an attack originated in a far corner of
the earth to have worldwide effects in a matter of hours.
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At the system level, the only real countermeasure
available to protect against these kinds of attacks is virus
scanning deployed both on the desktop systems and at
the corporate firewall. Although the companies market-
ing this technology do their best to keep up and are at-
tempting to develop quick response methods to deploy
new filters, when an outbreak occurs, the attacker con-
tinues to hold the advantage. There is, however, some
technology in the research pipeline [34–36] that holds the
promise of limiting both the damage certain types of ma-
licious mobile code can cause and also its ability to propa-
gate an attack.

In addition to being susceptible to attacks from mobile
and malicious code, many Internet-connected systems are
vulnerable to a variety of attacks against well-known vul-
nerabilities in operating systems or applications. These
attacks typically take the form of probes to determine
system configuration information, from which potential
vulnerabilities can be identified, followed by the sending
of crafted packets and messages that try to exploit the
hypothesized vulnerabilities.

A well-administered firewall is an essential first line of
defense against such probes and attacks, but it will never
be a complete solution. In fact, as more services are multi-
plexed over port 80, which few systems wish to block, the
effectiveness of firewalls may diminish. The increasing use
of encryption to cover Internet traffic could have a similar
effect, since it may make it impossible for the firewall to
monitor content.

Intrusion detection systems are another weapon in
the system administrator’s arsenal, Today, these sys-
tems work primarily by looking for signatures of known
attacks, and so they are subject to the same prob-
lem with novel attacks as virus scanners. In fact, since
most attacks are sequences of operations that may occur
over a period of time, interspersed with normal traf-
fic, they can be much more difficult to recognize than
a virus. Consequently, many users of the systems ex-
perience high rates of false alarms, which predictably
cause them to turn down the sensitivity of the detec-
tor, which in turn increases the probability of false
negatives.

Intrusion tolerance is a new approach to system archi-
tecture that takes as a given that some attacks against
a system will succeed and strives to organize system re-
sources so that even in the face of a partially successful
attack, critical system functions can be maintained, per-
haps in a degraded mode. Although research is active in
this area [37, 38], it is too early to assess results.

To summarize, today’s approach to software develop-
ment, testing, and distribution, combined with current
operating systems and system architectures, presents sig-
nificant vulnerabilities and a very challenging security
problem for any system administrator. Not only more
and better trained administrators, but also a techni-
cally more manageable and securable infrastructure, is
needed.

10 Unsolved problems

We could list a number of detailed open technical prob-
lems in computer security: easier ways to specify security
policies; more efficient, more flexible enforcement mech-
anisms; faster encryption algorithms; and so on. Com-
puter security problems have been the target of research
and development for 30 years. Principles for building se-
cure computing systems have been identified and mech-
anisms have been developed that implement them. There
is a thriving market in firewalls, intrusion detection sys-
tems, and the like. Why do we see an increasing number
of computer security problems?

1. Unsafe programming practices. For example, the ma-
jor source of exploitable security flaws continues to
be code that writes into a buffer without checking its
length first. This fact should be a major embarrass-
ment to the entire software development community.
Solutions to this problem are nearly as old as program-
ming languages.

2. Unsafe design choices, particularly at the applica-
tion layer. Developers increasingly integrate features
across applications, so that an e-mail package can au-
tomatically open and display a document or spread-
sheet attached to an incoming message. They incor-
porate scripting languages capable of executing arbi-
trary programs. These mechanisms can support many
convenient services, and users often embrace them.
But providing such services with so little regard for
security that they simultaneously enable automatic
worldwide distribution of destructive software is like
heating a room by setting the rug on fire.

3. Complex, hard-to-manage system architectures. As
long as it takes an expert to configure systems and
networks so that their security flaws are not exposed,
there will be plenty of opportunities for intruders.

One view of this situation is that the fundamental re-
search and development challenges have been met, and
that the problem is transitioning what we have learned
into the systems we build. There is some truth in this
view, but a more even-handed assessment might be that
the research community has not, so far, been able to gen-
erate solutions that are both simple enough to implement,
low enough in cost, and easy enough to use that they are
embraced by customers.

In either case, today’s information security engineer
is faced with the problem of building a trustworthy sys-
tem from untrustworthy components [39], which is akin
to building a silk purse from the proverbial sow’s ear.
The only workable solutions to date demand some min-
imum number of trustworthy components to be used in
conjunction with the untrustworthy ones. It is the com-
ponents that provide critical security services, such as
cryptographic devices, authentication devices, firewalls,
virtual private network components, and so on, that are
being relied on to provide overall system security and that
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therefore could justify the extra investment in design and
assurance that the security technologies entail.
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