
Talk delivered at IFIP WCC 2004, Toulouse, France

Trusting Strangers: Open Source Software and Security

Carl E. Landwehr
Institute for Systems Research
University of Maryland, College Park

Abstract:
The issues of trusting software, certifying security, and the relative merits of open and
closed source software as a basis for critical systems are discussed. It is concluded (i) that
neither approach in itself can assure the absence of security flaws or sabotage, (ii) that
better methods are needed for assuring the properties of products without respect to the
people or process used to create them, and (iii) that system architects should exploit what
they know they don't know, as well as what they do know, in composing system
architectures.

1. Software and Trust

We trust many artifacts that we do not personally investigate or even understand. Most
of us probably understand how a rowboat or a bicycle works, and we can usually see all
of its functioning parts. But using a car, an airplane, or almost any modern appliance
involves relying on technology that we don't examine directly and which in many cases
we understand only at some surface level. Few of us understand the detailed calculations
and inspections that underlie the safety of public buildings in which we enjoy concerts
and films or the microwave ovens in which we may cook dinner. We in fact rely on the
anonymous strangers who design, build, deliver, and in some cases maintain that artifact,
as well as the processes that are in place in our society to reward or punish them.

Software is an unusual sort of artifact in that it has little physical substance, yet it can
convey information, possibly sensitive information, and it can control physical devices.
It has a significant cost of design and implementation, yet very low cost of replication.
Very minor changes in its physical realization can cause major changes in system
behavior. Though a great deal of money is spent on it, it is rarely sold. Usually it is
licensed, customarily under terms that relieve the producer from nearly all responsibility
for its correct functioning.

2. Certifying Security

There are many perspectives for contrasting open and closed source software: purchase
price, maintenance cost, reliability, performance, safety, interoperability, and so on. The
focus here is from the security perspective, from which we consider the response of
software to potential acts of malice.

Safety critical systems for public use frequently depend on certification of process
combined with some degree of inspection and testing. These processes, particularly when

combined with both the threat of legal liability for the consequences of accidents
attributed to poorly engineered products, and the possibility of customers avoiding
products and companies whose products have proven unsafe, seem to work reasonably
well. There are not regular reports of airplanes falling from the sky or trains colliding
because of faulty software. Continued vigilance in these domains is of course required.

Unfortunately, these processes do not seem to be operating so well with regard to
security. The possibility of malicious use, or the malicious insertion of subtle flaws that
might later be maliciously exploited is not in general contemplated by the certification
processes applied in safety.

There are, of course, regular and increasing reports of security failures in systems
throughout the world. The increasingly common malicious acts of creating and
distributing worms and viruses primarily exploit accidentally introduced flaws in widely
distributed software. Economic incentives (e.g. for platforms from which to send spam
or mount distributed denial of service attacks) motivate the covert installation of
malicious, remotely controllable software on vulnerable platforms.

There are also mechanisms for certifying the security properties of software. The
primary mechanism at present is the provided by the "Common Criteria" scheme, which
provides a somewhat complex means to specify the security properties and assurance
level required of some particular component and to evaluate whether those properties are
present in some particular target of evaluation.

There are two significant problems with this scheme: one is that at the levels of assurance
most commonly sought, the source code of the system is never even looked at by the
certifiers; their tasks are primarily to assure that the system's specifications are properly
in order (and often these are created strictly for the certification process), to perform
some level of testing of security functions, and to see that mechanisms are in place to
assure that the software delivered is the same as what was evaluated. Yet the kinds of
software flaws most commonly exploited by today's attacks are not likely to be
discovered without access to the source code. Second, this scheme remains component-
oriented, while security remains a system property. This is not to say that the scheme is
without merit, but it is very definitely limited in what it can achieve, and its cost-
effectiveness has never been assessed.

But in a world where the headlines are being made by suicide bombers, nations continue
to engage in well-funded intelligence gathering activities, and daily electronic transfers of
funds in the US Fedwire system alone average more than $1 trillion, simple software
flaws are not the only concern in assessing software security. Software that may wind up
in critical systems may be the target of specific attacks. Indeed, a recent book asserts that
the U.S. made sabotaged pipeline control software available for the Soviet Union to
obtain more than twenty years ago, and this software in the end triggered a major pipeline
fire in Siberia. While I have no direct knowledge of the truth or falsity of this report, it is
difficult to deny that that famous fire might have been triggered in this way. An expert
might well be able to hide such software sabotage so that it is not even visible in the

source code, using methods like those documented in Ken Thompson's famous Turing
lecture. Software can be highly inscrutable even if the source code is available; the
effects of asynchronous operations and feature interactions are notoriously difficult to
understand.

3. Open vs. Closed

Do these considerations weigh on one side of the balance or the other for open source
software?

Open source software has the advantage that any interested party can apply arbitrary tools
to investigate it, to rebuild it, and to modify it to suit specific needs. It may be compiled
by different compilers and linked by different linkers and the results compared. It can be
examined by an arbitrary third party in as much detail as the sponsor can afford. But
liability is unlikely to be present as a potent force in this case, since the user takes on the
responsibility of composing, and potentially changing, the software. Control over the
input to the source code may be uncertain, since it may have contributions from around
the globe. And the fact that the proverbial "thousand eyes" could examine it does not
mean they will, or that all of those eyes will be friendly -- they may be looking for holes,
or places to insert subtle back doors. There is ample evidence that flaws can persist
unseen in source-available software for decades. People may donate effort to creating
open source software, but the evidence to date is that, except in a few notable cases (e.g.,
OpenBSD), they won't donate very much effort to providing competent security review
of it.

Closed source software has the benefit of the producer's economic interest in the product.
This interest should not be underestimated; it is (or can be) a powerful force for assuring
product quality in a competitive marketplace. It can drive strong measures for control of
software development, for testing of software prior to release, for configuration control of
the released product and for prompt repair of defects. It is the value of the product in the
marketplace, and hence its value as a corporate asset, that can justify this investment.
Regardless of one's view of the result, it is certainly significant that after years of
shrugging off security concerns as irrelevant to the market, since January 2002 Microsoft
has apparently invested heavily in improving its programming practices from the
standpoint of security and in changing the tradeoffs it makes in determining what features
to enable by default. Nevertheless, even lacking the source code, hackers continue to
find and exploit security flaws in Microsoft and other closed source software products.
Further, commercial software development is increasingly a global enterprise, even if it is
conducted within one corporation.

4. Conclusions

I propose three general conclusions from these observations:

1. Caveat emptor. Neither the open source model nor the closed source model has done a
very good job of producing "bullet-proof" software except when someone has been

willing to make a significant investment for that purpose. Exposing the source code does
nothing per se to improve its security properties. Neither does hiding it.

2. Seek product and architectural assurance rather than process assurance. As software,
closed or open source, is developed by groups of people in many diverse locations around
the world, it will become increasingly difficult to have confidence that a particular critical
system is secure because its software was produced by people you trust or by people
using a process you trust. Rather, we need stronger methods for examining the actual
code run on critical systems to assure that it has the intended properties, and where we
can't gain that assurance, we need architectural methods to limit the damage it can cause.

3. Exploit what you know, and what you know you don't know, about the software in
your system. If you are using open source software, take advantage of the opportunity to
review it, consider whether you should reconfigure it or rebuild it. If you are dealing with
a vendor of closed source software, investigate the development processes used, consider
the possible motivations of the developer, take account of any independent evaluations of
the software, or the lack thereof. Use this information to develop a system architecture
that manages the risks you know about.

ACKNOWLEDGEMENT

Thanks to my Maryland colleague Michael Hicks for helpful comments on a draft of this
note.

