
A Building Code for Building Code
Putting What We Know Works to Work

 Carl E. Landwehr
George Washington University

1923 Kenbar Ct.
McLean, VA 22101

ABSTRACT
Systems of programs control more and more of our critical
infrastructures. Forty years of system development and research
have taught us many lessons in how to build software that is
reliable, relatively free of vulnerabilities, and can enforce security
policies. Those years of experience seem not to have taught us
how to get these lessons put into practice, particularly with respect
to security, except in a few specialized places. This essay suggests
an approach to capturing what we know in a way that can make a
difference in systems on which we all rely.

Categories and Subject Descriptors
1998 CR classification: D.2.0 SOFTWARE ENGINEERING
General (Protection Mechanisms, Standards) K.4 COMPUTERS
AND SOCIETY K.4.1 Public Policy Issues (Regulation)

General Terms
Security, Standardization, Management

Keywords
Security policy, critical infrastructure software, building code

1. INTRODUCTION
In The Mythical Man-Month Fred Brooks writes, under the
heading “The Joys of the Craft”:

"... The programmer, like the poet, works only slightly
removed from pure thought-stuff. He builds his castles in the
air from air, creating by exertion of the imagination. Few
media of creation are so flexible, so easy to polish and
rework, so readily capable of realizing grand conceptual
structures. ...

"Yet the program construct, unlike the poet's words, is
real in the sense that it moves and works, producing visible
outputs separate from the construct itself. It prints results,
draws pictures, produces sounds, moves arms. The magic of

myth and legend has come true in our time. One types the
correct incantation on a keyboard, and a display screen
comes to life, showing things that never were nor could be.

 "Programming then is fun because it gratifies creative
longings built deep within us and delights sensibilities we
have in common with all.” [1, p.7]

Though I won’t claim any software I ever wrote rose to the level
of poetry, I quote these lines in part because they capture what
first drew me into computing and computer science.

These lines also remind us that although the execution of a
program by a computer can have very concrete effects, the
program itself is a relatively abstract creation – “only slightly
removed from pure thought-stuff.” But unlike the poet, whose
language communicates directly to readers, the programmer’s
creation is visible to most people only through its physical effects.

Metaphor is a figure of speech in which two otherwise unrelated
objects are asserted to be the same on some point of comparison
(without using “like” or “as”, which would convert metaphor to
simile). To think about ethereal things, or things they don’t fully
understand, people often resort to metaphors – things in the real
world that they do understand and that they can use to talk about
and think about those things made of "pure thought stuff".

This kind of thinking can be wonderfully helpful. A good
metaphor can provoke insights about the problem domain that
might be difficult or impossible to achieve through direct analysis.
But there is a risk that in embracing the metaphor, we will lose
sight of the places where metaphor and reality depart. Based on
the metaphor, we may believe things about the program that are
not necessarily true.

The balance of this essay proposes the adoption of the metaphor
of a building code as a framework to capture what we know about
how to build software that can weather attacks and as a vehicle to
put that knowledge into practice where it counts. But first, it
considers briefly the merits of some metaphors currently in wide
use for software and computing systems.

2. METAPHORS IN USE TODAY
If we think of a metaphor as a sort of mapping from a domain we
know something about – a source domain – to another domain we
are less certain of – the target domain, the metaphor may help us
understand the target domain if (1) the relationship captures an
essential aspect of the target, (2) it hides irrelevant details of the
target, and (3) reasoning in the source domain yields results in the
target domain that remain valid.

The well-known story of the six blind men examining the elephant
exemplifies metaphors that fail the second and third of these tests.
Each of the examiners creates his own metaphor for the beast
based on the particular part of the animal he is exposed to: the one
at the tail thinks the elephant is a rope, the one at the trunk thinks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions
from Permissions@acm.org.
ACSAC '13, December 09 - 13 2013, New Orleans, LA, USA
Copyright 2013 ACM 978-1-4503-2015-3/13/12…$15.00.
http://dx.doi.org/10.1145/2523649.2530278

it is a snake, the one at the tusk thinks the elephant is a spear and
so on.

Metaphors have been used to explain computer and information
security problems to people for a long time. We assess several
commonly used ones below.

2.1 Trojan Horse
Perhaps the oldest metaphor in computer security is the Trojan
horse. The story originates in Homer’s Iliad, in which the Greeks
appear to admit defeat and abandon the field, leaving behind what
seems to be a trophy to the Trojans: a large wooden replica of a
horse. The Trojans move the horse inside the city walls. But the
Greeks have concealed a few men inside it who then escape the
following night and open the city’s gates, allowing the Greek
army to invade and slaughter the inhabitants.

In the computer security context, the earliest use I have found of
this metaphor is in the Anderson Report in 1972, where the
identification of this kind of attack is attributed to Dan Edwards of
the NSA [2, p.62]. In the computing context, the Trojan horse is a
program that provides a function appealing enough that a user (or
administrator) is willing to install it even though its internal
details are not known. Once activated in the victim’s computing
context, the Trojan horse program takes advantage of the
privileges of that context to perform whatever functions its author
built into it, possibly including downloading additional malicious
software, for example.

This metaphor seems to work pretty well. The story is widely
understood, the metaphor captures an essential aspect of the target
domain – installing a dangerous component inside a security
perimeter, and reasoning about what the Trojans might have done
to avoid disaster carries over reasonably well to the computing
domain.

2.2 Worm
The original use of “worm” in a computing context apparently
comes from the novel Shockwave Rider, published by John
Brunner in 1975 [3]. As used in that story, the worm is a (virtual)
tapeworm and thus a parasite. In 1982, John Shoch and Jon Hupp
implemented a worm at Xerox PARC to take advantage of unused
computing cycles on a distributed set of machines [4].
The term is now defined in Internet RFC 1135 [5] as follows:

A "worm" is a program that can run independently, will
consume the resources of its host from within in order to
maintain itself, and can propagate a complete working
version of itself on to other machines.

Again, the notion of biological worms, including tapeworms, is
widely understood. Biological parasitic worms may require
alternate hosts to propagate, and computational worms may also
reflect that aspect. So it seems the metaphor does capture essential
aspects of the target domain. It definitely hides many inessential
details, and reasoning about biological parasitic worms seems to
carry over reasonably well in the computational domain: worms
consume host resources, can propagate to other systems, and can
be difficult to eradicate.

2.3 Virus
The precise origins of the virus metaphor for a particular kind of
software (today malware) are a but murky. David Gerrold’s
science fiction novel, When HARLIE Was One [6], published in
1972, is said to include “one of the first fictional representations
of a computer virus”[7]. The earliest use of the term in the

technical literature is a paper by Fred Cohen in 1984 [8]. Again
drawing on RFC 1135:

A "virus" is a piece of code that inserts itself into a host,
including operating systems, to propagate. It cannot run
independently. It requires that its host program be run to
activate it.

Viruses are a widely understood biological phenomenon, and as
the definition above indicates, the computational version displays
the ability to infect and modify the behavior of the host system but
depends on mechanisms in the host for replication, as the
biological version does. As biological viruses sometimes mutate
to form strains that resist prior treatments, computational viruses
have developed (albeit with human assistance) means of resisting
computational countermeasures. A new strain of virus, biological
or computational, may require new detection mechanisms and
new cures. So this metaphor seems apt.

2.4 Firewall
Physical firewalls are designed to prevent, or at least delay, the
propagation of a fire between parts of a building. The
International Building Code includes the following definition:

FIRE WALL: A fire-resistance-rated wall having
protected openings, which restricts the spread of fire and
extends continuously from the foundation to or through
the roof, with sufficient structural stability under fire
conditions to allow collapse of the construction on either
side without collapse of the wall.

The Anderson report [2] actually used “firewall” as a description
for the barriers an operating system should provide between
different user domains in a time-sharing system in 1972, but the
term gained its modern meaning with the advent of internet packet
filters in the late 1980s and early 1990s. By the time Bellovin and
Cheswick’s classic book [9] appeared in 1994, it was in wide use.

Unfortunately this metaphor has some serious problems. As noted
above, conventional firewalls are there to stop pretty much
anything, particularly fire, from penetrating them. Internet
firewalls aim to stop only the traffic they can detect as evil and to
let everything else pass through – so their fundamental purpose is
to provide communication, not to stop it. Indeed, firewalls barely
slow down a capable attacker, and this has been true for a long
time. So this seems to be a case where the metaphor, though
widely used, has fooled many people into thinking this component
provides a much greater degree of protection than it can achieve
in fact. A propped-open firedoor, perhaps manned by a sleepy
attendant, might be a better visualization of the operation of these
components.

2.5 Public Health
Cybersecurity is frequently described using the terms of public
health. This metaphor fits well with the virus and worm
metaphors. For example,users and system administrators are
admonished to observe proper “hygiene.”. Systems hosting
malware are “infected.” Large clusters of machines should be
“immunized” so they will display “herd immunity,” and if they
are identically configured they may represented a vulnerable
“monoculture.” There have even been calls for creating a
cybersecurity version of the US Center for Disease Control to
monitor malware outbreaks and provide immunizations.

In general, this metaphor works well according to the criteria we
have been using. Everyone understands public health and a good
deal of the reasoning one might follow in the public health
domain will not lead you astray in the cybersecurity domain.

However, it may have the side effect of making people think they
are dealing with a natural system, one in which they can't easily
alter the infrastructure (cells, organisms) and can only react.
Cybersecurity resides in artificial, engineered systems and the
threats against it are intentional and man-made. Regarding it as a
natural system may steer us away from engineered solutions that
would be much more difficult to accomplish in natural systems.

2.6 Cloud
Although “cloud” computing is not specifically a cybersecurity-
related metaphor, its widespread use requires a comment. Where
did we get the idea that computing is somehow similar to large
volumes of water vapor flitting across the sky? I don’t know for
sure, but I suspect this metaphor gestated in the countless slides
(including many I have shown myself) in which a large collection
of network links and nodes representing computers and
communication paths was drawn as a fuzzy cloud in order not to
have to represent the full details and complexity of the network it
was to represent. Data sent from one system to another would
leave its source, enter the network “cloud,” and emerge from
some other part of the cloud to be delivered. It is a short step
from having the cloud represent a network to having it represent
the attached computing resources as well.

But is this a helpful metaphor? What would security be for a
cloud? To a meteorologist, a cloud may be a complex, structured
object, but I doubt whether reasoning about meteorological clouds
will yield much insight about computational ones.

3. BUILDINGS AND BUILDING CODES
The metaphor I want to promote is that of software systems, and
more broadly, computing systems, as buildings. It’s hardly a new
idea. Computers are designed objects, artifacts, and people have
written about the organization of both the physical machine
structure, the instruction set, and the organization of the software
running on the machine in terms of “architecture” for a very long
time, if not from the beginning. Returning to The Mythical Man-
Month, one of Brooks’s key points is the need for conceptual
integrity in system design, and he explicitly draws parallels with
the design of European cathedrals to illustrate his points [1, p. 42
ff.].
Reasoning about building construction doesn’t of course carry
directly over to software, but the parallels are significant and
useful. Physical buildings of any size require design documents
and specifications. They must tolerate natural phenomena
(gravity, wind and weather, earthquake, fire), they are subject to
inspection during construction, and they are tested before they can
be occupied. Software and computing systems (perhaps especially
cyber physical systems) are specified, designed, implemented,
inspected, and tested. They must tolerate the perils of the
environment in which they are intended to be used.

But aren’t software and computing systems much more complex
and much more dynamic than buildings? Yes. Nevertheless, if we
are to have confidence that a software system meets its
requirements, as we surely want to have in systems on which
critical infrastructure relies, those systems must have a structure
and a mode of accommodating change that we can understand and
reason about.

Throughout the world, the primary mechanism that has arisen to
assure that buildings and collections of structures are safe and
useful to their occupants and communities is the building code.
Building codes in general specify constraints of various sorts on
how a building may be constructed. They can incorporate all

kinds of requirements relating to design, construction materials,
gas, electrical, and plumbing systems, and more. They are not
generally drafted by governments but rather by professional
societies of various sorts, motivated by a variety of interests.
They are periodically updated as society, technology and risk
perceptions change. They gain the force of law only when they are
adopted by municipalities, who may choose to adopt a model code
directly or with modifications motivated by local interests.

I argue that the notion of a building code, and particularly a
building code for critical infrastructure software security, is one
that modern society needs to adopt in order to assure that future
generations will have a cyberinfrastructure that can meet the
demands society is imposing on it. Such a code can provide a way
for us to capture what we have learned about how to build and
how to inspect software to support critical needs in the face of
attack. It can be developed incrementally and can be adopted
where needs are most urgent. It can be tailored to domains where
critical functions and threats differ. It can be updated as our
understanding improves, as better methods are developed.

Further, I want to persuade you to take an active role in helping to
develop such a code. To help convince you of the importance of
this task, I first provide some historical context about buildings
and building codes.

3.1 Buildings and Foundations
Everyone knows about the great pyramids of Giza, outside of
Cairo. There is a somewhat less famous pyramid about 30 miles
south of Cairo called the Bent Pyramid, built by Sneferu about
2600 BCE. The name comes from the fact that the lower part of
the pyramid rises at an angle of about 54 degrees, but the top
section rises at a shallower angle of about 43 degrees, giving the
pyramid a “bent” aspect. The reason for the change in angle is
thought to be that another nearby pyramid being built at the
steeper angle collapsed while this one was under construction,
causing a change of plan.
The pyramids, the Acropolis, the Roman Forum, and most of the
great cathedrals of Europe were built before Galileo and Newton
laid the foundations for modern physics. Today we are building
computing systems of unprecedented complexity and
connectedness, but we are mostly building them without the
benefit of scientific foundations as useful and strong as Galileo
and Newton provided for mechanics. Instead, we build systems,
see if they (or similar ones under construction) fall down, revise,
and repeat.

About 800 years after Sneferu, Hammurabi’s famous code of laws
included what we might consider the first building code:

§229 If a builder build a house for someone, and does not
construct it properly, and the house which he built fall in and
kill its owner, then that builder shall be put to death. [10]

This would be in the category of a “performance code” today: it
doesn’t tell you how to build the building, but if it doesn’t stand
up, you are liable.

At this writing, we are somewhere between Sneferu and
Hammurabi with respect to building codes and liability for
software and computing systems in general. There are efforts in
progress to try to develop more scientifically rigorous foundations
for software and security engineering, but system construction
proceeds without them. Software producers have so far avoided
general liability for their products and systems, though the advent
of cyber physical systems may bring change in this area.

3.2 How Do Building Codes Arise?
The creation of building codes seems to be stimulated by
disasters. Here are a few disasters of different kinds and how they
affected building codes that I’ve been able to glean from the
worldwide web.

3.2.1 Fire: London, 1666
The great fire of London, documented in Pepys diary, burned
from September 2-5, 1666 and destroyed some 430 acres,
approximately 80% of the city, including 13,000 houses, 89
churches, and 52 guild halls [11]. The fire led to the London
Rebuilding Act of 1666 and further legislation that aimed to limit
new construction to be faced with brick and imposed other
measures designed to reduce the likelihood of large fires [12].
These acts are commonly cited as the earliest laws regulating
construction in London, although it is also reported that thatched
roofs were banned as early as 1212, again to reduce the danger of
fire [13]. Reading the earlier act, it appears that enforcement was
not strict.

3.2.2 Earthquake: Santa Barbara, 1925
A month after the disastrous San Francisco earthquake of 1906,
scientists and engineers banded together to form the Structural
Association of San Francisco and concluded that well-braced
wooden buildings secured strongly to their foundations could have
withstood that quake. Although (perhaps for economic reasons)
the city fathers did not add specific earthquake-resistance
requirements to the building code, ordinances were passed
approving the use of reinforced concrete and requiring steel
framing in any new brick construction In June, 1925, Santa
Barbara suffered a severe earthquake that leveled most of its
downtown and led to the first earthquake provisions in any
California municipal building code. [14, 15, 16].

3.2.3 Hurricane: Okeechobee 1928
Miami was hit by a powerful hurricane in 1926, and another
Category 4 hurricane struck further north in 1928, in the Lake
Okeechobee area. The storm caused thousands of deaths along
with widespread and severe property damage. Buildings made of
brick, stone, or concrete survived better than others and those with
shutters had much less damage to windows. These observations
led to stronger building codes [17,18]. It is worth noting,
however, that in the aftermath of Hurricane Andrew in 1992, more
than a half century later, deficiencies in building codes and
enforcement remained a major issue in South Florida [19].

3.2.4 Construction errors: Kansas City, 1981
The collapse of a suspended walkway in the atrium of the Hyatt
Regency Hotel in Kansas City killed 114 people and injured more
than 200 others in July 1981. The cause was ultimately
determined to be a change from the original design in the way the
walkways were suspended. Instead of a single rod bearing two
levels of walkways, the lower walkway was suspended from the
upper walkway. This change, proposed by the steel company
building the structure and approved by the engineering firm
responsible for the design, led directly to the disaster. The
investigation concluded that the fundamental problem was lack of
proper communication between the designer and the steel
company. The responsible engineers were convicted of gross
negligence and unprofessional conduct; they lost their engineering
licenses and their memberships in the American Society of Civil
Engineers. The engineering firm was not found criminally
negligent, but it lost its license to be an engineering firm [20,21].

As it turned out, even the original design was deficient with
respect to the local building code requirements.

3.2.5 Malicious Attack: Oklahoma City Bombing
The bombing of the Alfred P. Murrah federal building in
Oklahoma City, April, 1995, is reported to have destroyed or
damaged 324 buildings and claimed 168 lives. The effect on
building construction was first to trigger the installation of Jersey
walls (add-on security) to many existing Federal buildings and to
add new requirements for Federal buildings that they have deep
setbacks from surrounding streets to reduce vulnerability to truck
bombs. Other recommendations for design of new Federal
buildings drew on features also used for earthquake protection
[21,22].

3.2.6 Discussion
The preceding examples illustrate how disasters can stimulate the
creation of building codes and other kinds of regulations that aim
to assure the safety of public and private structures in the face of
hazards. However, as is well-documented in [16] with respect to
California earthquakes, it often takes repeated disasters and
diligent work by safety advocates to stimulate public policy. The
history of hurricane damage in Florida illustrates the importance
not only of having codes but of enforcing the codes that are on the
books. For those interested in more details, Robert Ratay provides
several specific and relatively recent examples of structural
failures (including one bridge construction failure on the
Baltimore-Washington Parkway near the National Security
Agency) that have triggered changes in codes, standards, and
practices in structural engineering [23,24].

3.3 Building Codes Today
Several kinds of building codes are in use in the United States and
around the world today. The Uniform Plumbing Code, which
originated in Los Angeles in 1948, published its fourth edition in
2012. There is also a National Standard Plumbing Code, first
published in 1933, which is updated annually by the Plumbing,
Heating, and Cooling Contractors (PHCC) Association. These
codes are being reshaped today to enable and control graywater
use. There is a National Electrical Code published by the National
Fire Protection Association (NFPA) and updated every three
years. There is also an International Building Code (IBC) which
was established in 1994 as an organization dedicated to
developing a single set of comprehensive and coordinated national
model construction codes. In general, these are “model” codes
which gain the force of law only when they are adopted by states,
regions, or municipalities to govern construction within their
jurisdictions. They may be adopted in whole, in part, or with
modifications to suit local needs. The latest versions of the codes,
like many industrial standards, are public but not available for
free; the 2012 IBC is available electronically for about $100 at
this writing. Older versions of the codes may be found online at
no charge [25]. Public interests, insurance companies, building
trades, architects, engineers, and builders all participate in the
process of creating and updating these codes.

3.4 Building Code Enforcement
Building codes typically are adopted by municipalities or other
civil jurisdictions and in this way can gain the force of law.
Construction of a building cannot begin until a building permit is
issued by the local authorities, and the permit will not be issued
without a set of plans that have been stamped and signed by a
licensed architect or professional engineer, who is expected to
assure the plans conform to the applicable codes. A building

cannot be occupied until it passes inspections carried out by
employees of the governing entity throughout the construction
process to assure that it satisfies the applicable building codes. A
building inspector requires some training, and care must be taken
to control conflicting interests of the builder, inspector, owner,
and community.

3.5 Building Codes and Security
As the examples above illustrate, building codes have been
motivated more by safety concerns than security. Of course the
structure of forts and castles have always had security against
physical attack as a primary consideration (and touring them with
an eye to the security measures is fascinating) but resistance
against intrusion or physical attack has not generally been a
primary concern for modern building codes. Indeed, the
placement of large boulders and Jersey barriers in front of public
buildings following the 911 attacks provides graphic (and
concrete!) examples of add-on security.

4. SOFTWARE SYSTEMS AS BUILDINGS
Software has long been described in architectural terms. As noted
above, Brooks uses the design of European cathedrals to explain
what he means by the conceptual integrity of a software system.
Further, he discusses the architecture of software systems and the
importance of the role of the system architect [1, p. 41 ff,]. Like
many homes today, much software is designed by the builder and
assembled from components drawn from diverse and little-
examined international supply chains, without the benefit of an
architect.

Software is often described in terms of layers, with the hardware
instruction set providing the foundational layer, providing support
for the higher layers, just as the foundation of a building supports
the entire structure. Already in 1968, Djikstra described the
T.H.E. multiprogramming system in terms of hierarchical layers,
with each new layer building on the layers below [26].

As Parnas subsequently observed [27,28], software can be
described in terms of different kinds of hierarchies, including the
“uses” hierarchy, resource ownership and allocation hierarchies,
protection hierarchies, and more. Buildings too can be said to
display several kinds of hierarchies. Beyond the obvious ordering
of floors, the heating, ventilating and air-conditioning systems, the
electrical systems, the plumbing systems, the security systems,
and others typically display a branching structure in which some
components are foundational and others depend on them to
provide services to the occupants.
Today we speak of cyberspace as a place in which we spend time.
The many software systems that make up this place need
protections analogous to those our physical dwellings require:
systems that can detect intruders, safe escape routes in case of
natural disaster (perhaps an earthquake may be likened to a hard
drive crash), means to restore the structure and contents when a
disaster occurs. Further, the roof and walls need to be kept in
good repair and patched when cracks appear.

5. SOFTWARE BUILDING CODES IN USE
TODAY
Some systems that include substantial software control have been
subject to regulatory control for many years. The National
Academy of Sciences (NAS) report Software for Dependable
Systems: Sufficient Evidence? in 2007 reviewed then-current
certification practices for avionics software, medical software, and

security [29]. These are perhaps the closest things to building
codes for software that are currently in use.

5.1 FAA
The Federal Aviation Administration (FAA) certifies aircraft for
flight safety and the software affecting flight safety is included in
this certification. A special committee (SC-145) of the Radio
Technical Commission for Aeronautics (RTCA) first developed a
document, Software Considerations in Airborne Systems and
Equipment Certification, document DO-178, in 1982. Since then
it has been updated twice, as DO-178B in 1992 and DO-178C in
2011. The NAS report notes “At least in comparison with other
domains (such as medical devices), avionics software appears to
have fared well inasmuch as major losses of life and severe
injuries have been avoided,” although it goes on to observe that
the basis for some of the required testing procedures seems to be
poorly justified and that static analysis of the software revealed
many remaining “serious, safety-related defects” [29, pp. 34-35].

5.2 FDA
Medical software, as noted in [29], is less uniformly controlled
than avionics software. The Food and Drug Administration (FDA)
provides “guidance” for software validation [30] that draws on
standard software engineering approaches (up to 2002, when it
was issued); although the guidance is not binding it does bear
considerable weight. Recently, following a number of
demonstrations of security vulnerabilities in medical devices, the
FDA has issued its first draft guidance for management of
cybersecurity in medical devices [31]. While it includes
conventional kinds of guidance for authentication, validation of
updates, risk analysis, and the like, it does not address software
development practices.

5.3 Security
Of course there is a great deal of experience in the security
community with evaluation/certification of software and hardware
systems. Some of the other sessions at this conference are
celebrating the 30th anniversary of the first release of Trusted
Computer System Evaluation Criteria (TCSEC, the “orange
book”) [32]. Today we live under the Common Criteria [33] and
there are separate standards for certification of hardware/software
cryptographic modules [34]. While these documents contain much
that is valuable from a technical standpoint, it is hard to consider
the programs around them as successful overall. The original
TCSEC development was undertaken as part of a strategy to
encourage vendors to build at least a moderate level of security
into their normal product lines so that the government might build
on them to reach higher levels of assurance. This strategy didn’t
succeed for a number of reasons [35]. The Common Criteria
scheme has been criticized because it tends to be applied after the
fact (a criticism that also applies to earlier TCSEC product
evaluations targeted at levels of B2 and below) and focuses
primarily on specific security functions rather than the system as a
whole. Instead of developing the required documentation as part
of the development process, vendors often prefer to hire a third
party to prepare those documents for the evaluation laboratories
and to handle the evaluation process. “[B]ecause the certification
process at economically feasible evaluation levels focuses on the
functioning of the product’s security features even while real
vulnerabilities can occur in any component or interface, real-
world vulnerability data show that products that have undergone
evaluation fare no better (and sometimes worse) than products
that have not” [29, pp. 31-32].

5.4 BSIMM and OpenSAMM
The current “Building Security In Maturity Model” (BSIMM)
grew out of an effort to survey practices in commercial firms
engaged in software development that have undertaken software
security initiatives [36]. The report’s authors have surveyed firms
and recorded their practices in five rounds, so the current report,
from 2013, is referred to as BSIMM-V and includes results from
67 organizations...

As the work developed, the authors identified a set of twelve
“practices” organized into four domains (governance, intelligence,
secure software development lifecycle (SSDL) touchpoints, and
deployment). Practices include, for example compliance and
policy, attack models, code review, and penetration testing.

The authors make it clear that this is a descriptive, not
prescriptive, activity. They observe what practices are in use and
by recording them and providing statistical summaries, they
provide a yardstick against which firms can compare their
practices with others. The authors do not attempt to measure the
effectiveness of the practices undertaken.

The Open Software Assurance Maturity Model (OpenSAMM),
developed under the Open Web Application Security Project
(OWASP) also identifies a set of twelve practices in its guiding
document [38]. The goal of the effort is to “help organizatioins
formulate and implement a strategy for software security that is
tailored to the specific risks facing the organization” [38,p.3] The
approach seems slightly more normative than in BSIMM, in that
the basis for the specified practices and maturity levels seems to
intuition and general observation/experience rather than
observation of particular practices. Nevertheless, there seems to
be a good deal in common between the practices prescribed in
[38] and documented in [37], and neither of the efforts attempts to
assess effectiveness of the practices.

5.5 NIST Cybersecurity Framework
Following the failure of Congress to pass proposed cybersecurity
legislation in its 2012 session, the Obama administration pledged
to act within its existing authorities to improve cybersecurity in
critical infrastructure systems. As part of this effort, the
administration issued an Executive Order in February, 2013 [38].
Section 7 of the order directs the National Institute of Standards
and Technology (NIST) to “lead the development of a framework
to reduce cyber risks to critical infrastructure (the “Cybersecurity
Framework").” The framework is to include

“a set of standards, methodologies, procedures, and
processes that align policy, business, and technological
approaches to address cyber risks. The Cybersecurity
Framework shall incorporate voluntary consensus
standards and industry best practices to the fullest extent
possible. …”

A preliminary version of the framework was released for public
comment by NIST on Oct. 29, 2013; a final version is due out in
February, 2014.

At this writing, the most recent draft framework is organized
around the core notions of “Identify (assets), Protect, Detect,
Respond, Recover” [39]. It is too early to comment on the
outcome of the effort, but several public meetings have been held,
and it seems clear that the basis for the framework will be limited
to methods currently in commercial use. Even if the final
framework calls for best current practice, current practice is what
has led us to the current state. Bringing critical infrastructure

software up to “best current practice” would be laudable but it
seems unlikely to be sufficient to deal with the threats evident
today.

6. WHAT ELEMENTS WOULD A
BUILDING CODE FOR SOFTWARE
ENTAIL?
Suppose we accept the utility of the architectural metaphor for
software systems. Can thinking about the codes created to control
buildings help us identify the elements needed for creating a code
to control the development and deployment of software with
desired security properties? Building codes are typically
concerned with maintaining public safety, health, and welfare.
General areas of concern include:

• structural integrity: building integrity must be
maintained in the face of hazards of its location, such as
high winds, heavy rains, lightning, earthquakes

• fire safety: prevention, detection, limits on propagation,
safe exit, and in larger structures, support for firefighters

• physical safety of the occupants: door and stairway
dimensions and handrails, spacing of balusters

• water use: plumbing regulations, sufficiency of supply
and sewer/septic, effective sanitation, water
conservation

• energy use: insulation, heating systems, lighting,
electrical power, energy conservation

Correlates for a building code for software security might include:

• Structural integrity: requirements on software and
system integrity, tamper resistance ability of system
isolation mechanisms to resist attack

• Fire safety: use of “fireproof” materials (e.g., safe
coding standards), domain separation to limit
propagation of attacks, intrusion detection, recovery
mechanisms

• Physical safety: avoid the equivalent of sharp corners
and unprotected drop-offs in the security architecture:
be sure security mechanisms are easy to use and
understand

• Water and energy usage: information flow control
mechanisms, limitations on resource usage for security
functions, protection against system becoming a source
of denial-of-service attacks (exerting excessive resource
demands on networks)

Constructing an actual building code for building code is far
beyond the scope of this paper. Moreover, the construction of
such a code must inherently be a group activity, something that
builds consensus gradually among various stakeholders.

Given the effort that has been expended over the past decades on
the Orange Book and the Common Criteria, what would be
different about such an effort? Would it just yield a relabeling of
the voluminous documents we’ve already created? I don’t think it
has to be that way, though it makes sense to leverage activities
like BSIMM and the nascent NIST cybersecurity framework as
much as possible.

The NRC report on software for dependable systems [29],
advocates the development of explicit dependability claims for
systems and the development of evidence and arguments based on

the evidence, to support a dependability case for a system1.
Although the report observes that “it makes little sense to invest
effort in ensuring the dependability of a system while ignoring the
possibility of security vulnerabilities” [29, p. 19], it in general
excludes security concerns from its scope. But it makes one other
observation of particular interest here:

“As is well known to software engineers (but not to the
general public), by far the largest class of problems arises
from errors made in the eliciting, recording, and analysis
of requirements. A second large class of problems arises
from poor human factors design…

“Security vulnerabilities are to some extent an exception;
the overwhelming majority of security vulnerabilities
reported in software products – and exploited to attack the
users of such products – are at the implementation level.
The prevalence of code-related problems, however, is a
direct consequence of higher-level decisions to use
programming languages, design methods, and libraries
that admit these problems. In principle, it is relatively easy
to prevent implementation-level attacks but hard to retrofit
existing programs.”

The TCSEC and CC generally approach security from the top
down: define the security policy, apply it to the specifications,
identify security functions, provide assurance that the security
functions work as intended. It’s a logical approach. But the attacks
that we suffer from generally don’t aim to pick the locks on the
doors in our systems; rather they probe at the weak building
materials in the walls that weren’t part of the security argument at
all. They submit inputs that, because of low-level implementation
errors, entirely change the transition function of the system and
then open the doors from the inside.
This observation that the vast majority of the exploitable and
exploited vulnerabilities in today’s systems are not the result of
requirements or design flaws, but simple implementation
oversights, seems to offer a direction for a building code for
critical infrastructure software. At least use development practices
that minimize, and, where possible, rule out these kinds of flaws.
Use programming languages that make buffer overflows
infeasible. Use static and dynamic analysis techniques on software
for which source code is available to confirm the absence of
whole classes of flaws. The software won’t be perfect but it will
be measurably better.
One of the advances in the past decade has been the incorporation
of hardware in a wide range of systems to provide a root of trust,
yet today that hardware is vastly underused. It would seem to
make sense for a building code to require that code for critical
infrastructure systems take advantage of built-in mechanisms such
as Trusted Platform Modules to help assure at least the initial
integrity of software loads.

We need to be wary also of creating a code that requires masses of
highly trained building inspector equivalents. That’s where we
ended up with the TCSEC, and the Common Criteria don’t seem
to have helped a great deal in this respect. Our building code
should not try to do a great deal more than can be done with
automated support. It can evolve over time as technology
advances in this respect.

1 Similar approaches have been explored with respect to security

[40] but not widely adopted.

We also need to recognize that we may want to use software that
was developed by others and for which source code may not be
available. We need to understand what we can assure about such
software and how to use it without depending on properties we
can’t assure. That may mean certifying the strength of walls we
build around it, or providing alternative means of computing the
same result as a check, for example.

There is a great deal more to be said about what could and what
should be put into a building code for critical infrastructure
software. I don’t pretend to have all the knowledge and wisdom
to create such a code myself; moreover this seems to me
inherently a group activity, as already noted.

7. CALL TO ACTION
We are told there are tens of thousands of jobs awaiting
cybersecurity specialists, and we need to act quickly to train
individuals for them [41]. I suspect most of these are not jobs
creating new and innovative software products, but rather service
jobs for people who configure systems, install patches, monitor
systems for attacks, and conduct forensic investigations
afterwards. In some cases they are jobs developing attacks on the
systems of others. There is nothing dishonorable about these jobs,
but they provide graphic evidence of the poor level of software
security and system security engineering that we have come to
accept in today’s commercial products.

We do not lack the means to build systems that are much less
vulnerable to attack, but those means will only be applied when
those in a position to apply them have the incentive to do so. It is
essential to provide that incentive where the systems being
delivered underpin our society. Perhaps the Congress will find a
legislative means to provide that incentive, but today’s highly
polarized political climate and industry’s ingrained resistance
makes that a difficult path. Perhaps the executive branch can use
existing regulatory mechanisms to move in that direction, but its
tools are weak and the commercial world strongly resists them.
Perhaps lawsuits can eventually establish some liability through
the courts, but lawsuits are only effective after serious damage has
occurred and it would surely be better to avoid disasters than to
rely on them to change policy.

The technical community can begin to act on its own by creating a
credible building code for critical infrastructure system software
that could be adopted by industry and perhaps eventually given
legal force through government adoption. Industry can and should
participate fully in the development of such a code, which can
provide a credible means of self-regulation. The security technical
community should collaborate with the software engineering and
software quality/dependability/safety communities in this effort,
but we should not wait for them to get started. If disasters do
occur, this code should be available for adoption.

Another mechanisms the technical community could create would
be the equivalent of a board for investigating structural failures.
When major cybersecurity failures occur, we need a respected
group of technologists who can investigate what happened and
extract the lessons engineers of future systems need to learn from
those failures. Steve Bellovin has already proposed something
similar to this [42]
Research has an important role to play in this process. Ideally,
there should be a basis in theory or experiment for each
requirement put into the building code. In practice, I suspect there
will be substantial consensus on requirements for which the
research basis is weak or lacking. I wouldn’t omit such agreed-
upon practices or architectural features from the code but they

should be recognized as needing empirical or theoretical
validation, and the research community should take up the
challenge of providing sound evidence to illuminate the issue.

Regulation of any sort is often seen as a brake on technology, an
overhead that perhaps must be tolerated, but should certainly be
minimized. I want to close with some evidence to the contrary
from the Wall Street Journal. This conservative bastion recently
published a review of a new, fuel-efficient luxury hybrid car with
the following paragraphs:

“The specimen in question is a luxury sedan of goodly
size and weight, around 3,700 pounds, with 200 hybrid
horsepower, generous leather seats, big audio, exceptional
soundproofing, and a cabin filled with fine joinery and
brushed alloy trim. All in all, a handsome and
sophisticated presentation. This car accelerates from zero
to 60 miles per hour in around eight seconds and breaks
the beam in the quarter-mile in about 16 seconds, certainly
quicker than the last Jaguar E-type I drove.

“This quite uncompromised car … averages 40 miles per
gallon in mixed driving, according to the EPA.

“That’s astounding. And it’s not even the most fuel-
efficient car in its class … This yearling moose of a car
gets about the same fuel economy as a Ford Fiesta and, if
you didn’t know [it] was a hybrid, you wouldn’t guess.

“You know what’s even more astounding? Recall the
legions of entrenched industry forces who, two decades
ago, swore on their professional lives that increased fuel-
economy standards would drive up the cost of
automobiles while making them boring and less safe.
Yeah, that didn’t happen at all.

“In fact, the opposite has happened. Cars have gotten
more fuel efficient and more powerful, and quite
measurably safer in every type of collision… And, by the
way, the car business is booming.”[43]

My point is not that you should buy this car, but that regulation,
including self-regulation, does not have to imply a drag on
technology and creativity. It can, and in this particular case, seems
in fact to have served exactly as a spur to creativity, providing
engineers and companies the incentive to move their technology
in directions that might otherwise have been unexplored and are
now providing substantial benefits to society and to the companies
that took up the challenge.
I think we should strive to provide the same kind of creative
stimulus to the engineering of secure software that we provided to
the engineering of fuel-efficient cars, and that if we do, our
creative engineers can provide the same kind of results.

I am not naïve enough to think that this will be an easy process or
that it will result in systems with perfect security. But we can and
must do better, much better, particularly in the area of critical
infrastructure software, than we have done to date.

There is no reason we need to view security vulnerabilities as an
inevitable disease against which we must routinely invest in
weekly or monthly flu shots. These vulnerabilities are
engineering defects that have grown to the point where they
provide a fertile field for organized crime and a substantial lever
to groups or nations who would steal one another’s intellectual
property and potentially attack each other’s critical infrastructures.
As engineers and computer scientists, we have a responsibility to
act on our knowledge. I propose that we begin to act by creating a
credible building code for building code.

8. ACKNOWLEDGMENTS
I thank Charles Payne and the ACSAC organizers for the
invitation that led me to put these thoughts in print. I also thank
Hilary Orman, Susan Landau, and Terrry Benzel, organizers of
the GREPSEC workshop, where I presented some initial ideas on
this topic, and Bill Scherlis, who chaired discussions on building
codes at the 2012 NSF Secure and Trustworthy Cyberspace
Principal Investigators meeting. Comments from Jeremy Epstein
and Christoph Schuba helped me broaden the coverage and
sharpen the analysis. Marvin Michalsen, AIA, provided
perspectives on building codes. All opinions and all remaining
errors, remain my sole responsibility.

9. REFERENCES
[1] Brooks, F. P., Jr. The Mythical Man-Month: Essays on

Software Engineering. Addison Wesley, 1975.

[2] Anderson. J. P., ed. Computer Security Technology Planning
Study. ESD-TR-73-51, Vol. II, AFSC Hanscom Field,
Bedford, MA, Oct. 1972 p. 62. Available at:
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.p
df

[3] Brunner, J., Shockwave Rider. Harper & Row, 1975.
[4] Shoch, J, and Hupp, J. The “worm” programs – early

experience with distributed computations. CACM 25, 3
(March 1982) 172-180.

[5] Reynolds, J. The helminthiasis of the Internet. Network
Working Group RFC 1135m Dec. 1989. Available at:
http://www.ietf.org/rfc/rfc1135.txt

[6] Gerrold, David. When HARLIE Was One. Nelson
Doubleday, 1972.

[7] “When HARLIE Was One”, Wikipedia article, retrieved 9
Nov. 2013, from
http://en.wikipedia.org/wiki/When_HARLIE_Was_One

[8] Cohen, F. Computer viruses: theory and experiments. Proc.
7th DoD/NBS Computer Security Conference, 1984, 240-263.

[9] Cheswick. W.R. and Bellovin, S.M. Firewalls and Internet
Security: Repelling the Wily Hacker. Addison-Wesley,
Reading, MA, first edition, 1994. Available for personal use
at: http://www.wilyhacker.com/1e/

[10] Harper, R.F The Code of Hammurabi King of Bablyon,
University of Chicago Press, 1904, p. 81. Available at:
http://upload.wikimedia.org/wikipedia/en/4/4e/The_code_of_
Hammurabi.pdf

[11] The Great Fire of London, 1666. Luminarium Encyclopedia
Project:
http://www.luminarium.org/encyclopedia/greatfire.htm

[12] An Act for Rebuilding the City of London, 1666. Statutes of
the Realm, Vol. 5, 1628-80 (1819), J. Raithby, ed. pp 603-
612. Available at: http://www.british-
history.ac.uk/report.aspx?compid=47390&strquery=Building
%20Act#s5

[13] Regulations for building construction and fire safety,
Florilegium Urbanum website. Original source cited as
Corporation of London Records Office, Liber Custuarum, f.
52. Translated from Latin, available at:
http://users.trytel.com/~tristan/towns/florilegium/community/
cmfabr08.html

[14] Earthquake’s Impact on Building Codes. Multidisciplinary
Center for Earthquake Engineering (MCEER), SUNY
Buffalo, web page. Available at:
http://mceer.buffalo.edu/1906_Earthquake/industry_impacts/
impact-building-codes.asp

[15] Birkland, T. A. Lessons of Disaster: Policy Change After
Catastrophic Events. Georgetown U. Press, 2006.

[16] Geschwind, C-H. California Earthquakes: Science, Risk, and
the Politics of Hazard Mitigation. Johns Hopkins U. Press,
2001.

[17] Nelander, B. “The hurricane of 1928: category 4 hurricane
scarred Palm Beach,” Palm Beach Daily News, June 1, 2008.
Retrieved from Internet Archive,
http://web.archive.org/web/20080920065230/http://www.pal
mbeachdailynews.com/news/content/specialsections/HURRI
CANE1928page.html 7 October 2013.

[18] “1928 Okeechobee hurricane.” Wikipedia article, retrieved 7
October 2013 from:
http://en.wikipedia.org/wiki/Okeechobee_Hurricane#cite_not
e-27

[19] Bragg, R. “Storm over south Florida building codes.” New
York Times, May 27, 1999. Retrieved 7 October 2013 from
http://www.nytimes.com/1999/05/27/us/storm-over-south-
florida-building-codes.html

[20] National Bureau of Standards "Investigation of the Kansas
City Hyatt Regency Walkways Collapse". US Department of
Commerce. (May 1982).

[21] Perez, A.R. Murrah Federal Office Building. Article in
Failures Wiki: Building, Architectural and Civil Engineering
Failures and Forensic Practices (overview available at
http://failures.wikispaces.com/Home ; this article at:
http://failures.wikispaces.com/Murrah+Federal+Building .

[22] Wikipedia entry, “Oklahoma City Bombing,”
http://en.wikipedia.org/wiki/Oklahoma_City_bombing

[23] Ratay, R. T. “Changes in Codes, Standards and Practices
Followign Structural Failures, Part 1: Bridges,”
STRUCTURE Magazine, Dec. 2010, 16-19.

[24] Ratay, R.T. . “Changes in Codes, Standards and Practices
Followign Structural Failures, Part 2: Buildings.”
STRUCTURE Magazine, April. 2011, 21-24.

[25] International Building Code, 2009, Sixth Printing. Available
at: http://publicecodes.cyberregs.com/icod/ibc/2009/

[26] Djikstra, E. W.,“Structure of ‘THE’ Multiprogramming
System,” Comm. ACM 11, 5 (May, 1968), 341-346.

[27] Parnas, D.L. “On the Criteria to Be used in Decomponsing
Systems into Modules,” Comm ACM 15, 12 (Dec. 1972),
1053-1058, reprinted in Software Fundamentals: Collected
Papers by D.L. Parnas, D.M Hoffman and D.M. Weiss, eds.,
Addison Wesley, 2001

[28] Parnas, D.L. “On a ‘Buzzword’: Hierarchical Structure,”
IFIP Congress 1974, North Holland, 336-339, reprinted in
Software Fundamentals: Collected Papers by D.L. Parnas,
D.M Hoffman and D.M. Weiss, eds., Addison Wesley, 2001.

[29] Jackson, D., Thomas, M. and Millett, L. eds., Committee on
Certifiably Dependable Systems, Software for Dependable
Systems: Sufficient Evidence? National Academies Press,
2007. Accessible at:
http://www.nap.edu/catalog.php?record_id=11923

[30] US Food and Drug Administration. General Principles of
Software Validation; Final Guidance for Industry and FDA
Staff. Issued Jan. 11, 2002. Available at:
http://www.fda.gov/medicaldevices/deviceregulationandguid
ance/guidancedocuments/ucm085281.htm#_Toc517237933

[31] Content of Premarket Submissions for Management of
Cybersecurity in Medical Devices - Draft Guidance for
Industry and Food and Drug Administration Staff. Issued
June 14, 2013. Available at:
http://www.fda.gov/medicaldevices/deviceregulationandguid
ance/guidancedocuments/ucm356186.htm

[32] Department of Defense Trusted Computer Security
Evaluation Center, DOD 5200.28-STD, 1985. Available at:
http://seclab.cs.ucdavis.edu/projects/history/papers/dod85.pd
f available at
http://csrc.nist.gov/publications/history/dod85.pdf when US
government operating normally.

[33] The Common Criteria for Information Technology Security
Evaluation, Part 1, Version 3.1, Rev. 4, September 2009.
CCMB-2012-09-001. Part 2, Security Functional
Requirements, Part 3, Security Assurance Requirements. All
Available at: http://www.commoncriteriaportal.org/cc/

[34] National Institute of Standards and Technology (NIST).
Security Requirements for Cryptographic Modules. Federal
Information Processing Standards (FIPS) Publication 140-2.
May 25. 2001.

[35] Landwehr, C. “Improving information flow in the
information security market,” in Economics of Information
Security, L. Jean Camp and S. Lewis, ed., Kluwer, 2004, pp.
155-164. Available at:
http://www.landwehr.org/Carl%20E.%20Landwehr/Publicati
ons.html

[36] McGraw, G., Migues, S., and West, J. Building Security In
Maturity Model: BSIMM-V, Oct. 2013. Available at:
website. http://bsimm.com/

[37] Chandra, Pravir. Software Assurance Maturity Model.,
Version 1.0. Downloaded 9 Nov. 2013. An OWASP project,
available at: http://www.opensamm.org

[38] Obama, B., Improving critical infrastructure cybersecurity.
Executive Order 13636, February 12, 2013. Federal Register
Vol. 78, No. 33, Feb. 19, 2013. Available at:
www.gpo.gov/fdsys/pkg/FR-2013-02-19/pdf/2013-03915.pdf

[39] Improving Critical Infrastructure Cybersecurity: Preliminary
Cybersecurity Framework. NIST, October 29, 2013.
Available at: http://www.nist.gov/itl/upload/preliminary-
cybersecurity-framework.pdf

[40] Park, J., Moore, A., Montrose, B., Strohmeyer, B., and
Froscher, J. A methodology, a language, and a tool to
provide security assurance arguments. NRL/MR/5540-02-
8600, Naval Research Laboratory, Feb., 2002. Available at:
www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA399505

[41] Cyber Security Jobs Report. Abell Foundation and Cyber
Point LLC, January 8. 2013. Available from:
http://www.ctic-baltimore.com/report.html

[42] Steven M. Bellovin. The major cyberincident investigations
board. IEEE Security & Privacy, 10(6):96, November-
December 2012.

[43] Neil, D. “Lexus ES 300h: A Smooth, Elegant Guilt Eraser,”
The Wall Street Journal, March 16-17, 2013, p. D1

