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ABSTRACT 
Systems of programs control more and more of our critical 
infrastructures. Forty years of system development and research 
have taught us many lessons in how to build software that is 
reliable, relatively free of vulnerabilities, and can enforce security 
policies. Those years of experience seem not to have taught us 
how to get these lessons put into practice, particularly with respect 
to security, except in a few specialized places. This essay suggests 
an approach to capturing what we know in a way that can make a 
difference in systems on which we all rely. 
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1. INTRODUCTION 
In The Mythical Man-Month Fred Brooks writes, under the 
heading “The Joys of the Craft”: 

"... The programmer, like the poet, works only slightly 
removed from pure thought-stuff. He builds his castles in the 
air from air, creating by exertion of the imagination. Few 
media of creation are so flexible, so easy to polish and 
rework, so readily capable of realizing grand conceptual 
structures. ... 

"Yet the program construct, unlike the poet's words, is 
real in the sense that it moves and works, producing visible 
outputs separate from the construct itself. It prints results, 
draws pictures, produces sounds, moves arms. The magic of 

myth and legend has come true in our time. One types the 
correct incantation on a keyboard, and a display screen 
comes to life, showing things that never were nor could be. 

     "Programming then is fun because it gratifies creative 
longings built deep within us and delights sensibilities we 
have in common with all.” [1, p.7] 

Though I won’t claim any software I ever wrote rose to the level 
of poetry, I quote these lines in part because they capture what 
first drew me into computing and computer science.  

These lines also remind us that although the execution of a 
program by a computer can have very concrete effects, the 
program itself is a relatively abstract creation – “only slightly 
removed from pure thought-stuff.”  But unlike the poet, whose 
language communicates directly to readers, the programmer’s 
creation is visible to most people only through its physical effects. 

Metaphor is a figure of speech in which two otherwise unrelated 
objects are asserted to be the same on some point of comparison 
(without using “like” or “as”, which would convert metaphor to 
simile). To think about ethereal things, or things they don’t fully 
understand, people often resort to metaphors – things in the real 
world that they do understand and that they can use to talk about 
and think about those things made of "pure thought stuff". 

This kind of thinking can be wonderfully helpful. A good 
metaphor can provoke insights about the problem domain that 
might be difficult or impossible to achieve through direct analysis. 
But there is a risk that in embracing the metaphor, we will lose 
sight of the places where metaphor and reality depart.  Based on 
the metaphor, we may believe things about the program that are 
not necessarily true. 

The balance of this essay proposes the adoption of the metaphor 
of a building code as a framework to capture what we know about 
how to build software that can weather attacks and as a vehicle to 
put that knowledge into practice where it counts. But first, it 
considers briefly the merits of some metaphors currently in wide 
use for software and computing systems. 

2. METAPHORS IN USE TODAY 
If we think of a metaphor as a sort of mapping from a domain we 
know something about – a source domain – to another domain we 
are less certain of – the target domain, the metaphor may help us 
understand the target domain if (1) the relationship captures an 
essential aspect of the target, (2) it hides irrelevant details of the 
target, and (3) reasoning in the source domain yields results in the 
target domain that remain valid. 

The well-known story of the six blind men examining the elephant 
exemplifies metaphors that fail the second and third of these tests. 
Each of the examiners creates his own metaphor for the beast 
based on the particular part of the animal he is exposed to: the one 
at the tail thinks the elephant is a rope, the one at the trunk thinks 
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it is a snake, the one at the tusk thinks the elephant is a spear and 
so on.  

Metaphors have been used to explain computer and information 
security problems to people for a long time. We assess several  
commonly used ones below. 

2.1 Trojan Horse 
Perhaps the oldest metaphor in computer security is the Trojan 
horse. The story originates in Homer’s Iliad, in which the Greeks 
appear to admit defeat and abandon the field, leaving behind what 
seems to be a trophy to the Trojans: a large wooden replica of a 
horse. The Trojans move the horse inside the city walls. But the 
Greeks have concealed a few men inside it who then escape the 
following night and open the city’s gates, allowing the Greek 
army to invade and slaughter the inhabitants.  

In the computer security context, the earliest use I have found of 
this metaphor is in the Anderson Report in 1972, where the 
identification of this kind of attack is attributed to Dan Edwards of 
the NSA [2, p.62]. In the computing context, the Trojan horse is a 
program that provides a function appealing enough that a user (or 
administrator) is willing to install it even though its internal 
details are not known.  Once activated in the victim’s computing 
context, the Trojan horse program takes advantage of the 
privileges of that context to perform whatever functions its author 
built into it, possibly including downloading additional malicious 
software, for example. 

This metaphor seems to work pretty well. The story is widely 
understood, the metaphor captures an essential aspect of the target 
domain – installing a dangerous component inside a security 
perimeter, and reasoning about what the Trojans might have done 
to avoid disaster carries over reasonably well to the computing 
domain. 

2.2 Worm 
The original use of “worm” in a computing context apparently 
comes from the novel Shockwave Rider, published by John 
Brunner in 1975 [3].  As used in that story, the worm is a (virtual) 
tapeworm and thus a parasite. In 1982, John Shoch and Jon Hupp 
implemented a worm at Xerox PARC to take advantage of unused 
computing cycles on a distributed set of machines [4]. 
The term is now defined in Internet RFC 1135 [5] as follows:  

A "worm" is a program that can run independently, will 
consume the resources of its host from within in order to 
maintain itself, and can propagate a complete working 
version of itself on to other machines. 

Again, the notion of biological worms, including tapeworms, is 
widely understood.  Biological parasitic worms may require 
alternate hosts to propagate, and computational worms may also 
reflect that aspect. So it seems the metaphor does capture essential 
aspects of the target domain. It definitely hides many inessential 
details, and reasoning about biological parasitic worms seems to 
carry over reasonably well in the computational domain: worms 
consume host resources, can propagate to other systems, and can 
be difficult to eradicate. 

2.3 Virus 
The precise origins of the virus metaphor for a particular kind of 
software (today malware) are a but murky. David Gerrold’s 
science fiction novel, When HARLIE Was One [6], published in 
1972, is said to include “one of the first fictional representations 
of a computer virus”[7].  The earliest use of the term in the 

technical literature is a paper by Fred Cohen in 1984 [8]. Again 
drawing on RFC 1135: 

A "virus" is a piece of code that inserts itself into a host, 
including operating systems, to propagate.  It cannot run 
independently.  It requires that its host program be run to 
activate it.  

Viruses are a widely understood biological phenomenon, and as 
the definition above indicates, the computational version displays 
the ability to infect and modify the behavior of the host system but 
depends on mechanisms in the host for replication, as the 
biological version does. As biological viruses sometimes mutate 
to form strains that resist prior treatments, computational viruses 
have developed (albeit with human assistance) means of resisting 
computational countermeasures.  A new strain of virus, biological 
or computational, may require new detection mechanisms and 
new cures. So this metaphor seems apt. 

2.4 Firewall 
Physical firewalls are designed to prevent, or at least delay, the 
propagation of a fire between parts of a building. The 
International Building Code includes the following definition:  

FIRE WALL: A fire-resistance-rated wall having 
protected openings, which restricts the spread of fire and  
extends continuously from the foundation to or through 
the roof, with sufficient structural stability under fire 
conditions to allow collapse of the construction on either 
side without collapse of the wall.  

The Anderson report [2] actually used “firewall” as a description 
for the barriers an operating system should provide between 
different user domains in a time-sharing system in 1972, but the 
term gained its modern meaning with the advent of internet packet 
filters in the late 1980s and early 1990s. By the time Bellovin and 
Cheswick’s classic book [9] appeared in 1994, it was in wide use.  

Unfortunately this metaphor has some serious problems. As noted 
above, conventional firewalls are there to stop pretty much 
anything, particularly fire, from penetrating them.  Internet 
firewalls aim to stop only the traffic they can detect as evil and to 
let everything else pass through – so their fundamental purpose is 
to provide communication, not to stop it. Indeed, firewalls barely 
slow down a capable attacker, and this has been true for a long 
time.  So this seems to be a case where the metaphor, though 
widely used, has fooled many people into thinking this component 
provides a much greater degree of protection than it can achieve 
in fact.  A propped-open firedoor, perhaps manned by a sleepy 
attendant, might be a better visualization of the operation of these 
components. 

2.5 Public Health 
Cybersecurity is frequently described using the terms of public 
health. This metaphor fits well with the virus and worm 
metaphors.   For example,users and system administrators are 
admonished to observe proper “hygiene.”. Systems hosting 
malware are “infected.”  Large clusters of machines should be 
“immunized” so they will display “herd immunity,” and if they 
are identically configured they may represented a vulnerable 
“monoculture.”  There have even been calls for creating a 
cybersecurity version of the US Center for Disease Control to 
monitor malware outbreaks and provide immunizations.    

In general, this metaphor works well according to the criteria we 
have been using. Everyone understands public health and a good 
deal of the reasoning one might follow in the public health 
domain will not lead you astray in the cybersecurity domain.   



However, it may have the side effect of making people think they 
are dealing with a natural system, one in which they can't easily 
alter the infrastructure (cells, organisms) and can only react.  
Cybersecurity resides in artificial, engineered systems and the 
threats against it are intentional and man-made.  Regarding it as a 
natural system may steer us away from engineered solutions that 
would be much more difficult to accomplish in natural systems. 

2.6 Cloud 
Although “cloud” computing is not specifically a cybersecurity-
related metaphor, its widespread use requires a comment. Where 
did we get the idea that computing is somehow similar to large 
volumes of water vapor flitting across the sky?  I don’t know for 
sure, but I suspect this metaphor gestated in the countless slides 
(including many I have shown myself) in which a large collection 
of network links and nodes representing computers and 
communication paths was drawn as a fuzzy cloud in order not to 
have to represent the full details and complexity of the network it 
was to represent. Data sent from one system to another would 
leave its source, enter the network “cloud,” and emerge from 
some other part of the cloud to be delivered.  It is a short step 
from having the cloud represent a network to having it represent 
the attached computing resources as well. 

But is this a helpful metaphor? What would security be for a 
cloud? To a meteorologist, a cloud may be a complex, structured 
object, but I doubt whether reasoning about meteorological clouds 
will yield much insight about computational ones.  

3. BUILDINGS AND BUILDING CODES 
The metaphor I want to promote is that of software systems, and 
more broadly, computing systems, as buildings.  It’s hardly a new 
idea. Computers are designed objects, artifacts, and people have 
written about the organization of both the physical machine 
structure, the instruction set, and the organization of the software 
running on the machine in terms of “architecture” for a very long 
time, if not from the beginning. Returning to The Mythical Man-
Month, one of Brooks’s key points is the need for conceptual 
integrity in system design, and he explicitly draws parallels with 
the design of European cathedrals to illustrate his points [1, p. 42 
ff.]. 
Reasoning about building construction doesn’t of course carry 
directly over to software, but the parallels are significant and 
useful. Physical buildings of any size require design documents 
and specifications. They must tolerate natural phenomena 
(gravity, wind and weather, earthquake, fire), they are subject to 
inspection during construction, and they are tested before they can 
be occupied. Software and computing systems (perhaps especially 
cyber physical systems) are specified, designed, implemented, 
inspected, and tested. They must tolerate the perils of the 
environment in which they are intended to be used.  

But aren’t software and computing systems much more complex 
and much more dynamic than buildings? Yes. Nevertheless, if we 
are to have confidence that a software system meets its 
requirements, as we surely want to have in systems on which 
critical infrastructure relies, those systems must have a structure 
and a mode of accommodating change that we can understand and 
reason about. 

Throughout the world, the primary mechanism that has arisen to 
assure that buildings and collections of structures are safe and 
useful to their occupants and communities is the building code. 
Building codes in general specify constraints of various sorts on 
how a building may be constructed. They can incorporate all 

kinds of requirements relating to design, construction materials, 
gas, electrical, and plumbing systems, and more. They are not 
generally drafted by governments but rather by professional 
societies of various sorts, motivated by a variety of interests.  
They are periodically updated as society, technology and risk 
perceptions change. They gain the force of law only when they are 
adopted by municipalities, who may choose to adopt a model code 
directly or with modifications motivated by local interests. 

I argue that the notion of a building code, and particularly a 
building code for critical infrastructure software security, is one 
that modern society needs to adopt in order to assure that future 
generations will have a cyberinfrastructure that can meet the 
demands society is imposing on it. Such a code can provide a way 
for us to capture what we have learned about how to build and 
how to inspect software to support critical needs in the face of 
attack. It can be developed incrementally and can be adopted 
where needs are most urgent. It can be tailored to domains where 
critical functions and threats differ. It can be updated as our 
understanding improves, as better methods are developed.  

Further, I want to persuade you to take an active role in helping to 
develop such a code. To help convince you of the importance of 
this task, I first provide some historical context about buildings 
and building codes. 

3.1 Buildings and Foundations 
Everyone knows about the great pyramids of Giza, outside of 
Cairo. There is a somewhat less famous pyramid about 30 miles 
south of Cairo called the Bent Pyramid, built by Sneferu about 
2600 BCE. The name comes from the fact that the lower part of 
the pyramid rises at an angle of about 54 degrees, but the top 
section rises at a shallower angle of about 43 degrees, giving the 
pyramid a “bent” aspect.  The reason for the change in angle is 
thought to be that another nearby pyramid being built at the 
steeper angle collapsed while this one was under construction, 
causing a change of plan. 
The pyramids, the Acropolis, the Roman Forum, and most of the 
great cathedrals of Europe were built before Galileo and Newton 
laid the foundations for modern physics.  Today we are building 
computing systems of unprecedented complexity and 
connectedness, but we are mostly building them without the 
benefit of scientific foundations as useful and strong as Galileo 
and Newton provided for mechanics.  Instead, we build systems, 
see if they (or similar ones under construction) fall down, revise, 
and repeat.  

About 800 years after Sneferu, Hammurabi’s famous code of laws 
included what we might consider the first building code:  

§229 If a builder build a house for someone, and does not 
construct it properly, and the house which he built fall in and 
kill its owner, then that builder shall be put to death. [10] 

This would be in the category of a “performance code” today: it 
doesn’t tell you how to build the building, but if it doesn’t stand 
up, you are liable. 

At this writing, we are somewhere between Sneferu and 
Hammurabi with respect to building codes and liability for 
software and computing systems in general.  There are efforts in 
progress to try to develop more scientifically rigorous foundations 
for software and security engineering, but system construction 
proceeds without them.  Software producers have so far avoided 
general liability for their products and systems, though the advent 
of cyber physical systems may bring change in this area. 



3.2 How Do Building Codes Arise? 
The creation of building codes seems to be stimulated by 
disasters. Here are a few disasters of different kinds and how they 
affected building codes that I’ve been able to glean from the 
worldwide web.  

3.2.1 Fire: London, 1666 
The great fire of London, documented in Pepys diary, burned 
from September 2-5, 1666 and destroyed some 430 acres, 
approximately 80% of the city, including 13,000 houses, 89 
churches, and 52 guild halls [11]. The fire led to the London 
Rebuilding Act of 1666 and further legislation that aimed to limit 
new construction to be faced with brick and imposed other 
measures designed to reduce the likelihood of large fires [12]. 
These acts are commonly cited as the earliest laws regulating 
construction in London, although it is also reported that thatched 
roofs were banned as early as 1212, again to reduce the danger of 
fire [13].  Reading the earlier act, it appears that enforcement was 
not strict. 

3.2.2 Earthquake: Santa Barbara, 1925 
A month after the disastrous San Francisco earthquake of 1906, 
scientists and engineers banded together to form the Structural 
Association of San Francisco and concluded that well-braced 
wooden buildings secured strongly to their foundations could have 
withstood that quake. Although (perhaps for economic reasons) 
the city fathers did not add specific earthquake-resistance 
requirements to the building code, ordinances were passed 
approving the use of reinforced concrete and requiring steel 
framing in any new brick construction In June, 1925, Santa 
Barbara suffered a severe earthquake that leveled most of its 
downtown and led to the first earthquake provisions in any 
California municipal building code. [14, 15, 16]. 

3.2.3 Hurricane: Okeechobee 1928 
Miami was hit by a powerful hurricane in 1926, and another 
Category 4 hurricane struck further north in 1928, in the Lake 
Okeechobee area. The storm caused thousands of deaths along 
with widespread and severe property damage. Buildings made of 
brick, stone, or concrete survived better than others and those with 
shutters had much less damage to windows. These observations 
led to stronger building codes [17,18].  It is worth noting, 
however, that in the aftermath of Hurricane Andrew in 1992, more 
than a half century later, deficiencies in building codes and 
enforcement remained a major issue in South Florida [19].  

3.2.4 Construction errors: Kansas City, 1981 
The collapse of a suspended walkway in the atrium of the Hyatt 
Regency Hotel in Kansas City killed 114 people and injured more 
than 200 others in July 1981.  The cause was ultimately 
determined to be a change from the original design in the way the 
walkways were suspended. Instead of a single rod bearing two 
levels of walkways, the lower walkway was suspended from the 
upper walkway. This change, proposed by the steel company 
building the structure and approved by the engineering firm 
responsible for the design, led directly to the disaster.  The 
investigation concluded that the fundamental problem was lack of 
proper communication between the designer and the steel 
company.  The responsible engineers were convicted of gross 
negligence and unprofessional conduct; they lost their engineering 
licenses and their memberships in the American Society of Civil 
Engineers. The engineering firm was not found criminally 
negligent, but it lost its license to be an engineering firm [20,21].  

As it turned out, even the original design was deficient with 
respect to the local building code requirements.   

3.2.5 Malicious Attack: Oklahoma City Bombing  
The bombing of the Alfred P. Murrah federal building in 
Oklahoma City, April, 1995, is reported to have destroyed or 
damaged 324 buildings and claimed 168 lives.  The effect on 
building construction was first to trigger the installation of Jersey 
walls (add-on security) to many existing Federal buildings and to 
add new requirements for Federal buildings that they have deep 
setbacks from surrounding streets to reduce vulnerability to truck 
bombs. Other recommendations for design of new Federal 
buildings drew on features also used for earthquake protection 
[21,22]. 

3.2.6 Discussion  
The preceding examples illustrate how disasters can stimulate the 
creation of building codes and other kinds of regulations that aim 
to assure the safety of public and private structures in the face of 
hazards.  However, as is well-documented in [16] with respect to 
California earthquakes, it often takes repeated disasters and 
diligent work by safety advocates to stimulate public policy.  The 
history of hurricane damage in Florida illustrates the importance 
not only of having codes but of enforcing the codes that are on the 
books. For those interested in more details, Robert Ratay provides 
several specific and relatively recent examples of structural 
failures (including one bridge construction failure on the 
Baltimore-Washington Parkway near the National Security 
Agency) that have triggered changes in codes, standards, and 
practices in structural engineering [23,24].  

3.3 Building Codes Today 
Several kinds of building codes are in use in the United States and 
around the world today.  The Uniform Plumbing Code, which 
originated in Los Angeles in 1948, published its fourth edition in 
2012. There is also a National Standard Plumbing Code, first 
published in 1933, which is updated annually by the Plumbing, 
Heating, and Cooling Contractors (PHCC) Association. These 
codes are being reshaped today to enable and control graywater 
use. There is a National Electrical Code published by the National 
Fire Protection Association (NFPA) and updated every three 
years. There is also an International Building Code (IBC) which 
was established in 1994 as an organization dedicated to 
developing a single set of comprehensive and coordinated national 
model construction codes. In general, these are “model” codes 
which gain the force of law only when they are adopted by states, 
regions, or municipalities to govern construction within their 
jurisdictions.  They may be adopted in whole, in part, or with 
modifications to suit local needs. The latest versions of the codes, 
like many industrial standards, are public but not available for 
free; the 2012 IBC is available electronically for about $100 at 
this writing. Older versions of the codes may be found online at 
no charge [25]. Public interests, insurance companies, building 
trades, architects, engineers, and builders all participate in the 
process of creating and updating these codes. 

3.4 Building Code Enforcement 
Building codes typically are adopted by municipalities or other 
civil jurisdictions and in this way can gain the force of law. 
Construction of a building cannot begin until a building permit is 
issued by the local authorities, and the permit will not be issued 
without a set of plans that have been stamped and signed by a 
licensed architect or professional engineer, who is expected to 
assure the plans conform to the applicable codes. A building 



cannot be occupied until it passes inspections carried out by 
employees of the governing entity throughout the construction 
process to assure that it satisfies the applicable building codes.  A 
building inspector requires some training, and care must be taken 
to control conflicting interests of the builder, inspector, owner, 
and community. 

3.5 Building Codes and Security 
As the examples above illustrate, building codes have been 
motivated more by safety concerns than security.  Of course the 
structure of forts and castles have always had security against 
physical attack as a primary consideration (and touring them with 
an eye to the security measures is fascinating) but resistance 
against intrusion or physical attack has not generally been a 
primary concern for modern building codes. Indeed, the 
placement of large boulders and Jersey barriers in front of public 
buildings following the 911 attacks provides graphic (and 
concrete!) examples of add-on security.  

4. SOFTWARE SYSTEMS AS BUILDINGS 
Software has long been described in architectural terms.  As noted 
above, Brooks uses the design of European cathedrals to explain 
what he means by the conceptual integrity of a software system. 
Further, he discusses the architecture of software systems and the 
importance of the role of the system architect [1, p. 41 ff,]. Like 
many homes today, much software is designed by the builder and 
assembled from components drawn from diverse and little-
examined international supply chains, without the benefit of an 
architect.  

Software is often described in terms of layers, with the hardware 
instruction set providing the foundational layer, providing support 
for the higher layers, just as the foundation of a building supports 
the entire structure.  Already in 1968, Djikstra described the 
T.H.E. multiprogramming system in terms of hierarchical layers, 
with each new layer building on the layers below [26].  

As Parnas subsequently observed [27,28], software can be 
described in terms of different kinds of hierarchies, including the 
“uses” hierarchy, resource ownership and allocation hierarchies, 
protection hierarchies, and more. Buildings too can be said to 
display several kinds of hierarchies. Beyond the obvious ordering 
of floors, the heating, ventilating and air-conditioning systems, the 
electrical systems, the plumbing systems, the security systems, 
and others typically display a branching structure in which some 
components are foundational and others depend on them to 
provide services to the occupants.  
Today we speak of cyberspace as a place in which we spend time. 
The many software systems that make up this place need 
protections analogous to those our physical dwellings require: 
systems that can detect intruders, safe escape routes in case of 
natural disaster (perhaps an earthquake may be likened to a hard 
drive crash), means to restore the structure and contents when a 
disaster occurs.  Further, the roof and walls need to be kept in 
good repair and patched when cracks appear.  

5. SOFTWARE BUILDING CODES IN USE 
TODAY 
Some systems that include substantial software control have been 
subject to regulatory control for many years. The National 
Academy of Sciences (NAS) report Software for Dependable 
Systems: Sufficient Evidence? in 2007 reviewed then-current 
certification practices for avionics software, medical software, and 

security [29].  These are perhaps the closest things to building 
codes for software that are currently in use. 

5.1 FAA 
The Federal Aviation Administration (FAA) certifies aircraft for 
flight safety and the software affecting flight safety is included in 
this certification. A special committee (SC-145) of the Radio 
Technical Commission for Aeronautics (RTCA) first developed a 
document, Software Considerations in Airborne Systems and 
Equipment Certification, document DO-178, in 1982. Since then 
it has been updated twice, as DO-178B in 1992 and DO-178C in 
2011. The NAS report notes “At least in comparison with other 
domains (such as medical devices), avionics software appears to 
have fared well inasmuch as major losses of life and severe 
injuries have been avoided,” although it goes on to observe that 
the basis for some of the required testing procedures seems to be 
poorly justified and that static analysis of the software revealed 
many remaining “serious, safety-related defects” [29, pp. 34-35]. 

5.2 FDA 
Medical software, as noted in [29], is less uniformly controlled 
than avionics software. The Food and Drug Administration (FDA) 
provides “guidance” for software validation [30] that draws on 
standard software engineering approaches (up to 2002, when it 
was issued); although the guidance is not binding it does bear 
considerable weight. Recently, following a number of 
demonstrations of security vulnerabilities in medical devices, the 
FDA has issued its first draft guidance for management of 
cybersecurity in medical devices [31]. While it includes 
conventional kinds of guidance for authentication, validation of 
updates, risk analysis, and the like, it does not address software 
development practices. 

5.3 Security 
Of course there is a great deal of experience in the security 
community with evaluation/certification of software and hardware 
systems.  Some of the other sessions at this conference are 
celebrating the 30th anniversary of the first release of Trusted 
Computer System Evaluation Criteria (TCSEC, the “orange 
book”) [32].  Today we live under the Common Criteria [33] and 
there are separate standards for certification of hardware/software 
cryptographic modules [34]. While these documents contain much 
that is valuable from a technical standpoint, it is hard to consider 
the programs around them as successful overall. The original 
TCSEC development was undertaken as part of a strategy to 
encourage vendors to build at least a moderate level of security 
into their normal product lines so that the government might build 
on them to reach higher levels of assurance. This strategy didn’t 
succeed for a number of reasons [35].  The Common Criteria 
scheme has been criticized because it tends to be applied after the 
fact (a criticism that also applies to earlier TCSEC product 
evaluations targeted at levels of B2 and below) and focuses 
primarily on specific security functions rather than the system as a 
whole. Instead of developing the required documentation as part 
of the development process, vendors often prefer to hire a third 
party to prepare those documents for the evaluation laboratories 
and to handle the evaluation process. “[B]ecause the certification 
process at economically feasible evaluation levels focuses on the 
functioning of the product’s security features even while real 
vulnerabilities can occur in any component or interface, real-
world vulnerability data show that products that have undergone 
evaluation fare no better (and sometimes worse) than products 
that have not” [29, pp. 31-32]. 



5.4 BSIMM and OpenSAMM 
The current “Building Security In Maturity Model” (BSIMM) 
grew out of an effort to survey practices in commercial firms 
engaged in software development that have undertaken software 
security initiatives [36].  The report’s authors have surveyed firms 
and recorded their practices in five rounds, so the current report, 
from 2013, is referred to as BSIMM-V and includes results from 
67 organizations... 

As the work developed, the authors identified a set of twelve 
“practices” organized into four domains (governance, intelligence, 
secure software development lifecycle (SSDL) touchpoints, and 
deployment).  Practices include, for example compliance and 
policy, attack models, code review, and penetration testing.  

The authors make it clear that this is a descriptive, not 
prescriptive, activity. They observe what practices are in use  and 
by recording them and providing statistical summaries, they 
provide a yardstick against which firms can compare their 
practices with others. The authors do not attempt to measure the 
effectiveness of the practices undertaken.  

The Open Software Assurance Maturity Model (OpenSAMM), 
developed under the Open Web Application Security Project 
(OWASP)  also identifies a set of twelve practices in its guiding 
document [38]. The goal of the effort is to “help organizatioins 
formulate and implement a strategy for software security that is 
tailored to the specific risks facing the organization” [38,p.3] The 
approach seems slightly more normative than in BSIMM, in that 
the basis for the specified practices and maturity levels seems to 
intuition and general observation/experience rather than 
observation of particular practices. Nevertheless, there seems to 
be a good deal in common between the practices prescribed in 
[38] and documented in [37], and neither of the efforts attempts to 
assess effectiveness of the practices. 

5.5 NIST Cybersecurity Framework 
Following the failure of Congress to pass proposed cybersecurity 
legislation in its 2012 session, the Obama administration pledged 
to act within its existing authorities to improve cybersecurity in 
critical infrastructure systems.  As part of this effort, the 
administration issued an Executive Order in February, 2013 [38]. 
Section 7 of the order directs the National Institute of Standards 
and Technology (NIST) to “lead the development of a framework 
to reduce cyber risks to critical infrastructure (the “Cybersecurity 
Framework").” The framework is to include  

“a set of standards, methodologies, procedures, and 
processes that align policy, business, and technological 
approaches to address cyber risks. The Cybersecurity 
Framework shall incorporate voluntary consensus 
standards and industry best practices to the fullest extent 
possible. …”  

A preliminary version of the framework was released for public 
comment by NIST on Oct. 29, 2013; a final version is due out in 
February, 2014. 

At this writing, the most recent draft framework is organized 
around the core notions of “Identify (assets), Protect, Detect, 
Respond, Recover” [39]. It is too early to comment on the 
outcome of the effort, but several public meetings have been held, 
and it seems clear that the basis for the framework will be limited 
to methods currently in commercial use. Even if the final 
framework calls for best current practice, current practice is what 
has led us to the current state. Bringing critical infrastructure 

software up to “best current practice” would be laudable but it 
seems unlikely to be sufficient to deal with the threats evident 
today. 

6. WHAT ELEMENTS WOULD A 
BUILDING CODE FOR SOFTWARE 
ENTAIL? 
Suppose we accept the utility of the architectural metaphor for 
software systems.  Can thinking about the codes created to control 
buildings help us identify the elements needed for creating a code 
to control the development and deployment of software with 
desired security properties? Building codes are typically 
concerned with maintaining public safety, health, and welfare. 
General areas of concern include: 

• structural integrity: building integrity must be 
maintained in the face of hazards of its location, such as 
high winds, heavy rains, lightning, earthquakes 

• fire safety: prevention, detection, limits on propagation, 
safe exit, and in larger structures, support for firefighters 

• physical safety of the occupants: door and stairway 
dimensions and handrails, spacing of balusters   

• water use: plumbing regulations, sufficiency of supply 
and sewer/septic, effective sanitation, water 
conservation  

• energy use: insulation, heating systems, lighting, 
electrical power, energy conservation 

Correlates for a building code for software security might include: 

• Structural integrity: requirements on software and 
system integrity, tamper resistance ability of system 
isolation mechanisms to resist attack 

• Fire safety: use of  “fireproof” materials (e.g., safe 
coding standards), domain separation to limit 
propagation of attacks, intrusion detection, recovery 
mechanisms 

• Physical safety: avoid the equivalent of sharp corners 
and unprotected drop-offs in the security architecture: 
be sure security mechanisms are easy to use and 
understand  

• Water and energy usage: information flow control 
mechanisms, limitations on resource usage for security 
functions, protection against system becoming a source 
of denial-of-service attacks (exerting excessive resource 
demands on networks) 

Constructing an actual building code for building code is far 
beyond the scope of this paper. Moreover, the construction of 
such a code must inherently be a group activity, something that 
builds consensus gradually among various stakeholders. 

Given the effort that has been expended over the past decades on 
the Orange Book and the Common Criteria, what would be 
different about such an effort? Would it just yield a relabeling of 
the voluminous documents we’ve already created? I don’t think it 
has to be that way, though it makes sense to leverage activities 
like BSIMM and the nascent NIST cybersecurity framework as 
much as possible. 

The NRC report on software for dependable systems [29], 
advocates the development of explicit dependability claims for 
systems and the development of evidence and arguments based on 



the evidence, to support a dependability case for a system1. 
Although the report observes that “it makes little sense to invest 
effort in ensuring the dependability of a system while ignoring the 
possibility of security vulnerabilities” [29, p. 19], it in general 
excludes security concerns from its scope. But it makes one other 
observation of particular interest here:  

“As is well known to software engineers (but not to the 
general public), by far the largest class of problems arises 
from errors made in the eliciting, recording, and analysis 
of requirements. A second large class of problems arises 
from poor human factors design… 

“Security vulnerabilities are to some extent an exception; 
the overwhelming majority of security vulnerabilities 
reported in software products – and exploited to attack the 
users of such products – are at the implementation level. 
The prevalence of code-related problems, however, is a 
direct consequence of higher-level decisions to use 
programming languages, design methods, and libraries 
that admit these problems. In principle, it is relatively easy 
to prevent implementation-level attacks but hard to retrofit 
existing programs.” 

The TCSEC and CC generally approach security from the top 
down: define the security policy, apply it to the specifications, 
identify security functions, provide assurance that the security 
functions work as intended. It’s a logical approach. But the attacks 
that we suffer from generally don’t aim to pick the locks on the 
doors in our systems; rather they probe at the weak building 
materials in the walls that weren’t part of the security argument at 
all. They submit inputs that, because of low-level implementation 
errors, entirely change the transition function of the system and 
then open the doors from the inside. 
This observation that the vast majority of the exploitable and 
exploited vulnerabilities in today’s systems are not the result of 
requirements or design flaws, but simple implementation 
oversights, seems to offer a direction for a building code for 
critical infrastructure software. At least use development practices 
that minimize, and, where possible, rule out these kinds of flaws. 
Use programming languages that make buffer overflows 
infeasible. Use static and dynamic analysis techniques on software 
for which source code is available to confirm the absence of 
whole classes of flaws. The software won’t be perfect but it will 
be measurably better.  
One of the advances in the past decade has been the incorporation 
of hardware in a wide range of systems to provide a root of trust, 
yet today that hardware is vastly underused. It would seem to 
make sense for a building code to require that code for critical 
infrastructure systems take advantage of built-in mechanisms such 
as Trusted Platform Modules to help assure at least the initial 
integrity of software loads.  

We need to be wary also of creating a code that requires masses of 
highly trained building inspector equivalents.  That’s where we 
ended up with the TCSEC, and the Common Criteria don’t seem 
to have helped a great deal in this respect. Our building code 
should not try to do a great deal more than can be done with 
automated support. It can evolve over time as technology 
advances in this respect. 

                                                                    
1 Similar approaches have been explored with respect to security 

[40] but not widely adopted. 

We also need to recognize that we may want to use software that 
was developed by others and for which source code may not be 
available. We need to understand what we can assure about such 
software and how to use it without depending on properties we 
can’t assure.  That may mean certifying the strength of walls we 
build around it, or providing alternative means of computing the 
same result as a check, for example. 

There is a great deal more to be said about what could and what 
should be put into a building code for critical infrastructure 
software.  I don’t pretend to have all the knowledge and wisdom 
to create such a code myself; moreover this seems to me 
inherently a group activity, as already noted.  

7. CALL TO ACTION 
We are told there are tens of thousands of jobs awaiting 
cybersecurity specialists, and we need to act quickly to train 
individuals for them [41]. I suspect most of these are not jobs 
creating new and innovative software products, but rather service 
jobs for people who configure systems, install patches, monitor 
systems for attacks, and conduct forensic investigations 
afterwards. In some cases they are jobs developing attacks on the 
systems of others. There is nothing dishonorable about these jobs, 
but they provide graphic evidence of the poor level of software 
security and system security engineering that we have come to 
accept in today’s commercial products.  

We do not lack the means to build systems that are much less 
vulnerable to attack, but those means will only be applied when 
those in a position to apply them have the incentive to do so. It is 
essential to provide that incentive where the systems being 
delivered underpin our society.  Perhaps the Congress will find a 
legislative means to provide that incentive, but today’s highly 
polarized political climate and industry’s ingrained resistance 
makes that a difficult path. Perhaps the executive branch can use 
existing regulatory mechanisms to move in that direction, but its 
tools are weak and the commercial world strongly resists them. 
Perhaps lawsuits can eventually establish some liability through 
the courts, but lawsuits are only effective after serious damage has 
occurred and it would surely be better to avoid disasters than to 
rely on them to change policy.  

The technical community can begin to act on its own by creating a 
credible building code for critical infrastructure system software 
that could be adopted by industry and perhaps eventually given 
legal force through government adoption. Industry can and should 
participate fully in the development of such a code, which can 
provide a credible means of self-regulation. The security technical 
community should collaborate with the software engineering and 
software quality/dependability/safety communities in this effort, 
but we should not wait for them to get started. If disasters do 
occur, this code should be available for adoption.  

Another mechanisms the technical community could create would 
be the equivalent of a board for investigating structural failures.  
When major cybersecurity failures occur, we need a respected 
group of technologists who can investigate what happened and 
extract the lessons engineers of future systems need to learn from 
those failures. Steve Bellovin has already proposed something 
similar to this [42] 
Research has an important role to play in this process. Ideally, 
there should be a basis in theory or experiment for each 
requirement put into the building code. In practice, I suspect there 
will be substantial consensus on requirements for which the 
research basis is weak or lacking. I wouldn’t omit such agreed-
upon practices or architectural features from the code but they 



should be recognized as needing empirical or theoretical 
validation, and the research community should take up the 
challenge of providing sound evidence to illuminate the issue. 

Regulation of any sort is often seen as a brake on technology, an 
overhead that perhaps must be tolerated, but should certainly be 
minimized. I want to close with some evidence to the contrary 
from the Wall Street Journal.  This conservative bastion recently 
published a review of a new, fuel-efficient luxury hybrid car with 
the following paragraphs: 

“The specimen in question is a luxury sedan of goodly 
size and weight, around 3,700 pounds, with 200 hybrid 
horsepower, generous leather seats, big audio, exceptional 
soundproofing, and a cabin filled with fine joinery and 
brushed alloy trim. All in all, a handsome and 
sophisticated presentation. This car accelerates from zero 
to 60 miles per hour in around eight seconds and breaks 
the beam in the quarter-mile in about 16 seconds, certainly 
quicker than the last Jaguar E-type I drove.  

“This quite uncompromised car … averages 40 miles per 
gallon in mixed driving, according to the EPA. 

“That’s astounding. And it’s not even the most fuel-
efficient car in its class … This yearling moose of a car 
gets about the same fuel economy as a Ford Fiesta and, if 
you didn’t know [it] was a hybrid, you wouldn’t guess. 

“You know what’s even more astounding? Recall the 
legions of entrenched industry forces who, two decades 
ago, swore on their professional lives that increased fuel-
economy standards would drive up the cost of 
automobiles while making them boring and less safe.  
Yeah, that didn’t happen at all. 

“In fact, the opposite has happened. Cars have gotten 
more fuel efficient and more powerful, and quite 
measurably safer in every type of collision… And, by the 
way, the car business is booming.”[43] 

My point is not that you should buy this car, but that regulation, 
including self-regulation, does not have to imply a drag on 
technology and creativity. It can, and in this particular case, seems 
in fact to have served exactly as a spur to creativity, providing 
engineers and companies the incentive to move their technology 
in directions that might otherwise have been unexplored and are 
now providing substantial benefits to society and to the companies 
that took up the challenge. 
I think we should strive to provide the same kind of creative 
stimulus to the engineering of secure software that we provided to 
the engineering of fuel-efficient cars, and that if we do, our 
creative engineers can provide the same kind of results.   

I am not naïve enough to think that this will be an easy process or 
that it will result in systems with perfect security. But we can and 
must do better, much better, particularly in the area of critical 
infrastructure software, than we have done to date.  

There is no reason we need to view security vulnerabilities as an 
inevitable disease against which we must routinely invest in 
weekly or monthly flu shots.  These vulnerabilities are 
engineering defects that have grown to the point where they 
provide a fertile field for organized crime and a substantial lever 
to groups or nations who would steal one another’s intellectual 
property and potentially attack each other’s critical infrastructures. 
As engineers and computer scientists, we have a responsibility to 
act on our knowledge. I propose that we begin to act by creating a 
credible building code for building code.  
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