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Abstract 
 

An invitational workshop to develop both a draft “building code” that could be applied to 
improve the security of software operating medical devices and a research agenda to 
motivate research that could further develop such a building code was held in New 
Orleans, Louisiana from November 19-21, 2014 in New Orleans, Louisiana. This report 
documents the background for the workshop, how the workshop was organized and 
conducted, who participated, and includes as an appendix a draft of the building code 
developed during the workshop. It also provides guidance on possible uses for the report.  
The workshop participants were drawn from industry, including device developers and 
those involved in creating standards and evaluating device conformance, from the 
computer science, cybersecurity, and software engineering research communities, and 
from government. The draft code is intended to represent a consensus of the participants, 
as seen through the eyes of the chair and vice-chair of the workshop with the consultation 
of the five group leaders. The draft code provides a comprehensive structure with the 
most detail in the area of methods for limiting the vulnerabilities introduced in the 
implementation phase of the life cycle.  The draft code is expected to be developed 
further by those involved in the industry. The research agenda incorporates items 
proposed for the code that the participants felt required further evidence of effectiveness 
(to be generated through research) before they could be included in the code. 
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Workshop to Develop a Building Code and Research Agenda 
For Medical Device Software Security 

Final Report 
 
1. Background  
 
The aims of this workshop were (1) to establish an initial consensus among industry and 
academic participants on the components of a “building code” that would be appropriate 
to reduce significantly the vulnerability of medical devices to malicious attacks, and (2) 
to establish a research agenda for the creation of evidence that could justify the inclusion 
of additional elements in such a code. Support for the workshop was provided by the 
IEEE Computer Society’s Cybersecurity Initiative1 and the National Science 
Foundation’s Secure and Trustworthy Cyberspace program, both directly2 and through 
NSF’s Trustworthy Health and Wellness (THaW) project3. This document incorporates a 
draft building code as Appendix A and the research agenda as Appendix B. Additional 
appendices provide a mapping of the code elements to the NIST Cybersecurity 
Framework [NIST14], the call for participation, agenda, and the list of participants. 
 
Building codes for physical structures [IBC12] grow out of industry and professional 
society groups – suppliers, builders and architects – rather than from government, 
although adoption of codes by government provides the legal basis for enforcement.  
Building codes generally apply to designs, building processes, and the finished product. 
Code enforcement relies on inspections of structures during construction and of the 
finished product and also on certification of the skills of the participants in the design, 
construction, and inspection processes. Codes also account for different domains of use; 
code requirements for single-family dwellings differ from those for public buildings, for 
example. Although building codes arose largely from safety considerations (e.g. reducing 
the risk of widespread damage to cities from fires, hurricanes, or earthquakes), security 
from malicious attack has also motivated some aspects of building codes.  
 
Following the ideas expressed in [L13], this workshop aimed to develop an analog to 
building codes focused on the security properties of software rather than the structure and 
characteristics of physical buildings.  The objective of this code for software security is to 
increase assurance that software developed for the domain of medical devices4 will be 
free of many of the security vulnerabilities that plague software generally.  Since 
evidence to date suggests that a large fraction of exploitable security flaws are not design 
flaws but rather implementation flaws, an initial building code for medical device 
software security could focus on assuring that the final software that operates the device 

                                                 
1 IEEE Cybersecurity Initiative, http://cybersecurity.ieee.org/  
2 NSF CNS 14-52113, Creating a Building Code for Medical Device Software Security 
3 NSF CNS 13-30491, Trustworthy Health and Wellness (THaW) 
4 We use “medical device” in this document in a general sense, with the intention to 
include mobile health apps as well as implants, monitors, and other healthcare-related 
devices. Any use of the workshop results in a legal context would of course need to be 
precise about the covered domain of devices. 

http://cybersecurity.ieee.org/
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is free of certain classes of implementation flaws, although it could address aspects of the 
development process as well.  For example, the code might specify that modules written 
in a language that permits buffer overflows be subject to particular inspection or testing 
requirements, while modules written in type-safe languages might require a lesser degree 
of testing and inspection. The code can in this way help the industry establish a baseline 
for best practice for security and establish conventions for development as the use of 
standard materials and dimensions helps architects and builders. 
 
2. Process 
 
The draft building code and research agenda provided in this report are the product of a 
two-day invitational workshop convened in New Orleans, Louisiana, November 19-21, 
2014. Forty people from a wide range of backgrounds including medical device 
development, standards, and regulation, cybersecurity research, programming languages, 
and software engineering participated in the workshop.  Details on the process used to 
organize the workshop are provided as Appendix G. 
 
After the workshop, the chair and vice-chair conferred to organize the agreed elements 
and bring them into a consistent structure. The draft building code resulting from this 
process was circulated to the workshop discussion group leaders and a portion of the 
steering committee and then revised in accordance with comments received. The 
resulting Building Code is provided as Appendix A to this report, and the research 
agenda is provided as Appendix B.   
 
3. Discussion 
 
The underlying motivation for creating this building code for the security of medical 
device software is to provide a basis that developers can use to rule out the most 
commonly exploited classes of software vulnerabilities.  To accomplish this, the code 
elements must be effective and relatively easy to evaluate.  
 
These considerations led the participants to focus on the elements in Category B: 
Elements intended to avoid / detect / remove specific types of vulnerabilities at the 
implementation stage. As noted in the draft code, memory safety errors in 
implementations are a major source of exploitable errors. Selecting a programming 
language that makes these errors impossible (element B.1) seems clearly desirable for 
any new effort.  Developers who do not choose such a language can employ other options 
that can be inspected reasonably easily.  These options include: subsetting the chosen 
language (B.2), automated memory safety error mitigation (B.3), and enforcing secure 
coding standards on the use of the chosen language (B.4), but none of these can provide 
the same level of assurance as simply using a language that eliminates the possibility of 
these errors.  
 
Since there are classes of errors unrelated to memory safety, the participants identified 
several other elements for the draft building code, including: use of accredited 
cryptography, analysis of code correctness with respect to specifications and 
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comprehensive test coverage.  Specifying the critical properties of the software and 
applying automated analysis tools to assure that the implementation (source or binary) 
agrees with the specification (B.6) requires a higher level of technical sophistication on 
the part of the developer but can provide very high assurance of the absence of specified 
vulnerabilities, and this approach has been successfully applied to substantial bodies of 
code.  Application of the Modified Condition Decision Coverage testing criterion (B.8), 
although resource intensive for the developer, has proven effective for life-critical 
avionics systems and it would seem an appropriate technique for life-critical medical 
devices as well.  
 
The structure used to describe each of the elements in the draft code differs slightly from 
the template developed for sample elements prior to the workshop. The primary 
difference is the “references demonstrating effectiveness” section is omitted. One reason 
for the omission is that building codes for physical structures do not generally include 
such references; the presence of the item in the code is influenced by informed discussion 
among professionals and some process for generating consensus among experts. 
Secondly, the level of evidence cited in the submissions received – the number and types 
of references or other evidence – varied widely and not necessarily in proportion to the 
degree of consensus for including particular items in the code. So, while it continues to 
seem appropriate to the organizers to provide strong evidence of effectiveness of code 
elements before they are included, evidence of effectiveness has been omitted from the 
Appendix A element descriptions. 
 
4. How might this report be used? 
 
This report can be used in several ways. There are many standards groups in the medical 
device domain. As security joins safety, interoperability, and usability concerns as a 
primary concern of these groups, Appendix A offers a concrete approach to addressing 
security concerns, particularly in the Section B items that aim to reduce vulnerabilities 
introduced in the implementation process.  Any use of this material will certainly require 
elaboration, context setting, and many other details to be fleshed out, but an initial 
skeleton is now available. 
 
The FDA recently issued its nonbinding guidance on managing cybersecurity in medical 
devices [FDA]. The draft code can be used by developers to help them respond to parts of 
this guidance. 
 
Other industries such as automotive control, power grid management, and aviation, where 
security vulnerabilities are an increasing concern might wish to develop building codes 
relevant to their respective domains. The workshop structure and the draft code may help 
them organize similar efforts. 
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5. Conclusion  
 
The work reported here must be viewed as the beginning, not the end, of an effort to 
create a foundation for building medical devices that are free of the kinds of 
vulnerabilities that are most commonly exploited. For this work to have real effect, it 
must be carried forward by those with responsibilities for building and evaluating 
medical devices and for creating the framework of standards surrounding their 
development and use.  One step forward in relating this work to existing standards and 
frameworks is the mapping of the categories of code elements used at the workshop to 
those of the NIST Cybersecurity Framework [NIST14], provided in Appendix C, 
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Appendix A 
 

Draft Building Code for Medical Device Software Security 
 

I. Purpose 
 
This code is intended to provide a basis for reducing the risk that software operating 
medical devices is vulnerable to malicious attacks.  Such attacks might impede or alter 
the device’s function, leak sensitive data, or otherwise impede the device’s ability to 
achieve its medical purpose. In some lexicons, a code begins as a standard and only 
becomes a code once it is adopted legally and has the force of law behind it. On the other 
hand, the International Building Code [IBC] was developed as a model code, one that can 
be tailored for different environments and adopted legally by different jurisdictions. What 
is developed here is intended as the beginnings of a model code for software security in 
the same sense. 
 
The aim in specifying such a model code is not to assure that future medical devices can 
resist every imaginable attack, but rather to establish a consensus among experts in 
medical devices, cybersecurity, and computer science on a reasonable model code for the 
industry to apply. Metaphorically, the aim is to specify the needed properties of the bricks 
used to construct the building, not to specify the architecture of the structure. The reason 
for focusing on the “bricks” at this time is that it continues to be the case that the majority 
of vulnerabilities currently exploited in cyberattacks of various sorts are errors in 
implementation rather than design.  By focusing particularly on properties desired of the 
code as implemented, we hope to be able to constrain implementations so that these 
“bricks” are sound in that they do not exhibit many of the kinds of vulnerabilities 
currently exploited. 
 
Proper architecture and design are, of course, critical for the safety, usability, 
maintainability, and effectiveness of these systems, and responsible developers need to 
apply sound methodologies to every phase of construction, from requirements through 
final testing and delivery.  There are many other activities underway that aim to establish 
standards and guidelines in these areas, but few focus on the areas emphasized in this 
document.  
 
II. Scope and Applicability 
 
This section of the code should specify the domain of devices/systems to which the code 
is intended to apply. This draft code is intended to apply to software that operates or 
executes within the context of a broad range of medical devices (see Definitions, below). 
It was not developed with other software domains (e.g., software controlling automobiles, 
software in large scale IT systems) in mind, although if software suffers from similar 
vulnerabilities, those domains might well benefit from a similar set of constraints. The 
present code focuses primarily on assuring that the software is protected from malicious 
inputs or errors in cryptographic functions; it does not address many common security 
functions (e.g., authentication, authorization, auditing), although security logging  and 
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whitelisting mechanisms are included. A mature building code may well allow or require 
variations according to the particular type of device covered and its capabilities and 
operating environment, but such differences, particularly in terms of analysis of the 
software developed for the device, would need to be justified. These considerations were 
beyond the scope of a two-day workshop and are not incorporated here. 
 
III. Governance 
 
This section of the code should specify the organization responsible for establishing and 
maintaining the code and related procedures. The code elements presented here represent 
the consensus (seen through the eyes of the chair and vice-chair) of those present at the 
workshop, those who contributed ideas via the workshop website but who could not 
participate directly, and those who have drafted and reviewed this report. It is available to 
any standards group or other body interested in taking up these ideas.  There are no plans 
at present for this group itself to maintain and update the code. 
 
IV. Definitions 
 
This section should define terms used in the code that may otherwise be unclear. There 
was not time at the workshop to define all the needed terms. The term “medical device” 
is used loosely in this document and merits a brief discussion. The participants 
recognized that a “medical device” might be an implant, a wearable device (sometimes 
called a “health management device”), a bedside device in a hospital, a large-scale 
diagnostic device such as an MRI system, or a Medical Device Data System (MDDS) 
that may transfer, store, and display data generated by other medical devices. These cover 
a huge range of technologies, complexities, environments, and risks. The practical 
adoption of a code such as the one proposed here should include a more precise 
specification of the characteristics of the devices to which it is intended to apply. It may 
be that the code should be tailored to different devices and to environments where the 
device is used. These considerations could not be addressed in this preliminary version.   
 
V. Procedures 
 
If a code such as this one were adopted by a consortium of developers, a standards body, 
or a regulatory agency, it would be necessary to specify a number of procedures in 
relation to the code. For example: 

 How will a software component be evaluated to determine if it meets the 
code?  What about a system comprising many components? 

 Who will decide if the submitted component satisfies the code? Companies 
producing or using software might self-certify that their software satisfies the 
code, but such assertions should be subject to impartial review by an outside 
group and should be documented consistently. 

 How will the code be modified over time? The group administering the code 
should be able to update it through a voting or consensus process as conditions 
warrant. 

 How will legacy devices be handled?   
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 How will incorporation of software produced by third parties be handled? 
Again, specifying these procedures is beyond the scope of this initial effort but would be 
needed in practice.  
 
VI. Elements Recommended for Inclusion, by Category 
 
In creating the categorization below, the chair and vice-chair attempted to be 
comprehensive, although they recognized that the proposed elements fail to address some 
of the categories. These empty categories are retained to highlight potential unmet needs. 
It is worth noting that the objective of reducing implementation errors is generally 
captured in Category B, and that almost half the elements originally proposed for 
consideration were in that category.  
 
For each element of the code, four subsections are provided: 

a. Description: What is the meaning and purpose of this element? 
b. Vulnerabilities addressed: What kinds of vulnerabilities will be reduced or 

eliminated if this element is implemented properly? 
c. Developer resources required: What resources will the individual or organization 

developing the software/device require in order to satisfy this element? 
d. Evaluator resources required: What is required for a third party to assess whether 

the device satisfies this element? 
 
A. Elements intended to remove / avoid flaws at the design stage 

1. Secure Random Numbers  
a. Description: Generating random numbers for use in initializing pseudorandom 

number generators and cryptographic algorithms, using them correctly, and 
avoiding re-using them are challenging problems. Mistakes can nullify 
cryptographic mechanisms no matter how well designed. As advised in 
[IEEE14], developers should adopt established approaches that have been 
vetted by experts in the field rather than attempting novel solutions. 

b. Vulnerabilities addressed: use of non-random seeds can render cryptographic 
mechanisms ineffective and permit attackers to spoof, tamper, or disclose 
sensitive data  

c. Developer resources required: access to vetted procedures for random number 
generation; may be platform-dependent 

d. Evaluator resources required: manual review of design and code or attested 
use of vetted sources of randomness. 

 
2. Full Recognition of Inputs Before Processing 

a. Description: Designers should consider the grammar of the language of inputs 
and use the most restrictive grammar consistent with required component 
functions. They should then be sure that inputs are checked for conformance 
to that grammar before processing those inputs. A component that accepts an 
input without checking its validity presents a path that an attacker can probe. 

b. Vulnerabilities addressed: Exploitation of input-handling code by maliciously 
crafted inputs 
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c. Developer resources required: Specification of input language, program 
source code, and software framework for generating recognizer for input 
language. 

d. Evaluator resources required: Requires audit of software and of its data 
language definitions for adherence to the design principle. Audit must identify 
the code that checks and handles inputs immediately upon receipt, and 
evaluate whether the checking code is (a) complete as a recognizer for a given 
definition of valid and expected data (b) isolated from other functionality. 
Automation might assist the review with appropriate constraints on 
specification and implementation languages and procedures. 

3. Least Operating System Privilege 
a. Description: The least-privilege principle calls for the operating system to 

grant programs/processes only those privileges required for them to carry 
out their specified functions [SS75]. Programs requiring root or 
administrator privileges should use fine-grained operating system level 
privileges when available.  Additionally, for those systems that allow 
enabling/disabling of privileges (e.g., effective UIDs, effective and 
maximum privilege/capability sets, etc.), privileges should be enabled 
only for those system calls needing them.  Privileges should be removed 
when no longer needed.  Programs should be designed so that the number 
of privileges needed and the amount of time those privileges are needed is 
minimized. 

b. Vulnerabilities addressed: exploitation of over-privileged processes. 
c. Developer resources required: Designers need to keep the principle in 

mind as they organize the system components. Implementers need to abide 
by the constrained design and avoid granting privileges in the 
implementation not called for in the design. One approach is to list the 
privileges available, list the entities that have that privilege, and provide a 
rationale as to why the entity requires the privilege. Testing the system as 
an ordinary user rather than as a system administrator is also helpful. 

d. Evaluator resources required: Automated static analysis can help reveal 
whether privileges are enabled only where specified. Manual analysis is 
required to determine if the design adheres to the principle. 

 
B. Elements intended to avoid / detect / remove specific types of vulnerabilities at 
the implementation stage. This section opens with several items related to 
programming language selection, use, and analysis (B.1 – B.6) and then proceeds to 
other topics (B.7-B.9).  
 
Several building code elements recommended for adoption aim to reduce 
vulnerabilities by controlling the selection and use of programming language. 
Languages such as C and C++ are widely used because they provide programmers 
with flexibility, efficiency, and compatibility with large bodies of legacy software.  
They also permit programmers to easily make mistakes that are hard to find and 
provide attackers with exploitation opportunities.  In a way, basing a program on this 
kind of language is like constructing a building from flammable materials: the 
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structure may be inexpensive and provide shelter for a while, but it may be easy for 
an arsonist to sabotage it. Of particular interest is the loosely defined property of 
“memory safety” which is defined informally [SPWS13] as the prevention of memory 
access errors of the following kinds:  

 buffer overflow 
 null pointer dereference 
 use after free 
 use of uninitialized memory 
 illegal free (of an already-freed pointer, or a non-malloced pointer) 

 
Elements B.1 – B.4 represent alternative and, roughly speaking, successively weaker 
approaches from a security standpoint to dealing with memory safety vulnerabilities. 
B.5 provides an approach to assuring thread safety. B.6 covers the use of a wide range 
of tools from static analyzers to SAT solvers and theorem provers that can provide 
very strong assurance of specified properties. These tools are increasingly capable but 
still limited in the size of code base they can process. The use of approved 
cryptography (B.7) involves both algorithm and implementation so may be 
considered a design requirement.  B.8, like B.6, provides relatively strong assurance 
but is unlikely to be feasible for large code bases. 

 
1. Use of Memory-Safe Languages 

a. Description: Some programming languages are designed to prevent 
memory safety errors listed above. Selecting such a language effectively 
rules out these large classes of vulnerabilities. 

b. Vulnerabilities addressed: memory safety vulnerabilities including buffer 
overflow, null pointer dereference, use after free, use of uninitialized 
memory, and illegal free. 

c. Developer resources required: requires programmers trained in the 
selected language, compilers and run-time libraries for the language. 

d. Evaluator resources required: ability to recompile the source code using a 
compiler for the memory-safe language (in order to confirm that the object 
modules have been produced as claimed). 

 
2. Language Subsetting 

a. Description: To reduce the possibility that known exploitable language 
constructs will occur in programs, the developer restricts implementers to 
a use only a subset of language features or constructs, avoiding those 
known to be risky or ambiguous. Use of a restricted subset of a language 
may also improve performance of static analysis tools on the software. 
Subsets of several languages, including C (MISRA C), Ada (SPARK 
Ada), are available.  

b. Vulnerabilities addressed: memory access and other implementation 
errors. 

c. Developer resources required:  programmers trained in use of the subset, 
code scanners to enforce subset constraints. 
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d. Evaluator resources required: access to source code and scanning tool to 
confirm programs abide by subset constraints. 

 
3. Automated Memory Safety Error Mitigation and Compiler-Enforced Buffer 

Overflow Elimination 
a. Description:  For software written in non-memory-safe languages (e.g., 

C/C++), use compiler transforms that enforce memory safety (e.g., 
SAFECode, WIT, Baggy Bounds Checking, SoftBound).  Develop policy 
on what to do when a run-time error is detected (e.g., reset device and 
produce an audit event) 

b. Vulnerabilities addressed: memory safety errors 
c. Developer resources required: access to software checking tools, source 

code 
d. Evaluator resources required: Ability to re-run tools used by developer on 

the source/binary; requires confirming that an appropriate compiler has 
compiled all of the software with the instrumentation enabled. 
Alternatively, binary scanning tools may be used to confirm the code has 
been transformed. 

 
4. Use of Secure Coding Standards 

a. Description: To reduce the possibility of exploitable vulnerabilities in 
languages susceptible to memory access errors, but without restricting 
programmers to a subset language, adherence to standard usages of the 
language structures is required.  Using the standard can reduce the 
possibility of memory safety and other exploitable errors substantially.  
Secure coding standards are available for C, C++, and Java. 

b. Vulnerabilities addressed: memory safety and other implementation errors. 
c. Developer resources required: programmers trained in use of the coding 

standard, software to check programs produced for conformance to the 
standard. 

d. Evaluator resources required: source code, automated checker for 
conformance to standards. If conformance cannot be mechanically 
checked, manual auditing may be required. 

 
5. Automated Thread Safety Analysis 

a. Description: Multi-threaded code is annotated by the developer to declare 
desired thread safety properties. Tool (compiler option) assures that the 
policies are enforced. 

b. Vulnerabilities addressed: race conditions and deadlocks 
c. Developer resources required: Programmers capable of developing correct 

annotations, access to compiler capable of processing them. 
d. Evaluator resources required: Ability to determine that appropriate 

annotations have been made (manual) and that all the software was 
processed with the appropriate compiler and options (or re-compile it); 
ability to review the specified safety policies. 
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6. Automated Analysis of Programs (Source/Binary) for Critical Properties 
a. Description: Critical properties desired of a binary (or source) program are 

specified precisely. The subject program is then analyzed against a model 
embodying the semantics of the (hardware/software) execution 
environment to verify that the desired properties are present. 

b. Vulnerabilities addressed: the approach can address any vulnerability that 
can be specified. 

c. Developer resources required: Requires developers capable of specifying 
the properties desired of the implementation in the language accepted by 
the verification tools involved, or access to experts with this ability and 
associated automated tools. 

d. Evaluator resources required: Ability to generate and review output of 
verification tools applied to the programs analyzed 

 
7. Accredited Cryptographic Algorithms and Implementation  

a. Description: Cryptographic algorithms that resist serious analysis are 
notoriously difficult to invent and program. Weaknesses also surface in 
key management and surrounding protocols. Developers should seek 
algorithms and tools that have received some external, open certification 
(e.g., from NIST or other organizations) rather than attempting to develop 
their own. If this is not feasible for some reason solutions should be 
expertly reviewed. 

b. Vulnerabilities addressed: weaknesses in cryptographic algorithms and 
implementations 

c. Developer resources required: Access to expertly vetted cryptographic 
algorithms and implementations 

d. Evaluator resources required: Ability to audit software for use of vetted 
cryptography or to automatically verify implemented cryptography against 
vetted specification 

 
8. Modified Condition Decision Coverage 

a. Description: This is a criterion for test coverage that has been successfully 
applied to life-critical avionics software for many years and is part of 
standards for automotive, rail, and process control systems. It requires a 
specification of system behavior and that testing against that specification 
achieves the following coverage:  
- Each entry and exit point is invoked at least once 
- Each decision has taken each possible outcome at least once 
- Each condition in a decision takes on every possible outcome at least 
once 
- Each condition shown to independently affect the outcome of the 
decision. 
This test coverage criterion subsumes statement and branch coverage, 
requires k+1 tests for k conditions, and ensures t-way combination 
coverage of at least (1+t)/2t. The required testing may not be feasible for 
large code bases; it is appropriate for life-critical medical software. 
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b. Vulnerabilities addressed: this is a general tool for assuring implemented 
software performs as designed. It is not targeted at detecting specific 
vulnerabilities but has proven effective for assuring safety in many life-
critical systems. 

c. Developer resources required: Requires system specification at the level of 
detail that it can be used to validate test results. The coverage criterion 
demands extensive testing of the software. 

d. Evaluator resources required: Resources to review system specification 
and test results (some automation should be possible to see that test and 
specification match). 

 
9. Operational Use Case Identification and Removal of Unused Functions 

a. Description: Use cases for the device are specified and software 
components required by each use case are identified. Software not 
required by any use case is considered for removal / disablement to 
eliminate / reduce the possibility of attacks exploiting unneeded software. 
This element is probably most effective at a relatively high level of 
abstraction to be sure that unused libraries, collections of functions, and 
applications are eliminated rather than at a detailed, line-by-line code 
level. 

b. Vulnerabilities addressed: software vulnerabilities located in unused 
components 

c. Developer resources required: Requires identification of complete set of 
use cases (sometimes difficult in practice) and ability to track use case 
back to software required for it. 

d. Evaluator resources required: Manual review of software components 
present against use cases specified. 

 
C. Elements intended to assure software / firmware provenance and integrity, but 
not to remove flaws in code. The mechanisms for C.1 and C.2 are essentially the same; 
they are listed as separate elements to emphasize that not only the initial distribution / 
hardware integrity needs to be assured but also the integrity of subsequent updates that 
are virtually certain to be required.  
 

1. Digitally Signed Firmware and Provenance (supply chain) 
a. Description:  Developer/integrator affixes digital signature to 

software/firmware installed in device.  In case of subsequent device 
malfunction or compromise, the digital signature of the software present at 
the time of failure can be recomputed and compared with the signature of 
the distributed version to detect tampering. 

b. Vulnerabilities addressed: this element addresses software provenance, 
helping establish accountability for fielded software. It does not aim to 
eliminate vulnerabilities in the software/firmware. 

c. Developer resources required: Developer (or third party) needs a private 
signing key, needs to protect that key, and needs to make the 
corresponding public key available for checking. 
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d. Evaluator resources required: Evaluator needs to assure integrity of 
signing mechanisms and operational mechanisms for signature 
verification. 

 
2. Software/firmware Update Validation 

a. Description: The aim is to enable valid updates to operational software 
while minimizing the possibility that the update mechanisms can be 
subverted to install fraudulent updates. The method is to require an 
encrypted checksum (digital signature) on the updated software and to 
validate this checksum using the developer’s public key. 

b. Vulnerabilities addressed: installation of fraudulent software updates, loss 
of accountability to system producer. 

c. Developer resources required: Developer (or third party) needs a private 
signing key, needs to protect that key, and needs to compute and needs to 
make the corresponding public key available. 

d. Evaluator resources required: Evaluator needs to assure integrity of 
signing mechanisms and operational mechanisms for signature 
verification. 

 
3. Whitelisting 

a. Description: The aim is to avoid execution of untrustworthy, possibly 
malicious, applications. Prior to execution of application software, the 
software is checked against a list of authorized applications (the whitelist). 
Entering new applications in the whitelist is a privileged operation, not 
under operator control.  

b. Vulnerabilities addressed: execution of unvetted application software. The 
mechanism does nothing to remove vulnerabilities from applications; 
however, by assuring that the application to be executed is included on the 
whitelist it provides a significant barrier to the execution of malware even 
after a successful penetration [in this sense it could also be placed in 
category D below]. 

c. Developer resources required: whitelisting mechanism and attendant 
software to permit privileged users to update the whitelist needs to be 
incorporated in system design and implementation. 

d. Evaluator resources required: Manual review of whitelisting mechanism 
specification and implementation (if the mechanisms are specified 
formally, automated assistance is possible). 

 
D. Elements intended to impede attacker analysis or exploitation but not necessarily 
remove flaws 

1. Non-executable Data Pages 
a. Description: Storage is divided into code segments that may be read or 

executed but not written and data segments that may be read or written but 
not executed. Temporary storage (stacks, heaps, global variable) is 
assigned to data segments and so cannot be used by attackers to execute 
instructions. 
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b. Vulnerabilities addressed: many attacks depend on inserting new code into 
the system stack or other writeable storage locations (data pages). 
Preventing the execution of instructions located on writeable pages 
thwarts these kinds of attacks, though they may still achieve a denial of 
service when the attempted execution fails. It does not prevent attackers 
from using ROP (return oriented programming) attacks in which the attack 
relies on executing instructions already present on executable pages. 

c. Developer resources required: Developer needs to organize code to take 
advantage of this structure and hardware mechanisms supporting it. Note 
that JIT (just-in-time) compilation and other mechanisms designed to 
develop and install code during operation will pose problems. 

d. Evaluator resources required: Evaluator needs to review the use of 
mechanisms for assigning code and data to storage segments. 

 
2. Anti-tamper for Hardcoded Secrets / Keys / Data Within Medical Device 

Software 
a. Description: Employ appropriate software/hardware protections against 

malicious modification of medical device secrets by the possessor of the 
device. Solutions relying solely on software (“white box cryptography”) 
and solutions that exploit widely available hardware (Trusted Platform 
Modules (TPMs) with supporting software) are available.  

b. Vulnerabilities addressed: Unauthorized access to, or deliberate 
modification of, application generated and/or managed data by malicious 
possessor of device. 

c. Developer resources required: Access to appropriate software/hardware 
packages and expertise to apply them correctly. 

d. Evaluator resources required: Manual review of application of the selected 
mechanisms; potentially red-team testing to evaluate overall effectiveness. 

 
E. Elements intended to enable detection / attribution of attack 

1. Security Event Logging 
a. Description: Provide a tamper-resistant audit trail for security-related 

events, such as installation of software, authentication of a user, detection 
of attacks that are mitigated by security mechanisms, etc.) 

b. Vulnerabilities addressed: this element addresses accountability by 
providing an after-the-fact trail for forensic analysis. 

c. Developer resources required: Requires identification of security related 
event types and implementation of append-only log of security related 
events (e.g., authentications, privilege level changes, software updates), 
strongly resistant to tampering. 

d. Evaluator resources required: Manual review of identified security related 
event types and of design and implementation of logging mechanisms and 
security event generation mechanisms. [Note that operator resources to 
review the logs are also required; tools for log analysis may be needed.] 

 
F. Elements intended to assist in safe degradation of function in face of attack 
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 [None proposed] 
 
G. Elements intended to assist in restoration of function after attack 
 [None proposed] 
 
H. Elements intended to support maintenance of operational software without loss 
of integrity 
 [See Software Update Validation, Element C.2] 
 
I. Elements intended to support privacy requirements 
 
X. Characteristics desired of the building code itself (e.g.  use of standard names, 
maintenance of the building code over time, scope) 

 Use within the code itself of standard names for types of attacks / attack patterns 
and types of vulnerabilities 
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Appendix B 

Research Agenda for Medical Device Software Security 
 

 
Several of the elements proposed for the building code were found not to be ready for 
inclusion in the code for a variety of reasons. Some were considered to be potentially 
valuable but not ready for practical use; others were specified a bit too abstractly for 
practical evaluation without substantial human effort and interpretation. Others were felt 
to require additional research to show their effectiveness. These elements are listed and 
described below. The order of the items is not significant. 
 
1. Assurance case research 

A. Using OMG structured assurance case metamodel (SACM) based tooling.   
SACM provides a general method of stating and analyzing security claims and for 
exchanging these claims among vendors and providers.  This sort of technique could 
have great value as medical devices become more complex and more highly 
connected.  However, there is not yet a convincing body of evidence that the current 
SACM approach will prove effective for medical devices.  Research must be 
performed to apply SACM and related tools to medical devices and then to measure 
the effectiveness of the tools and techniques.  Questions to answer include: 
 Which sorts of assurance properties for medical devices can be established more 

easily using the tools and techniques, and what sort of cost reduction can be 
achieved? 

 How much do the tools and techniques reduce ambiguity and confusion when 
exchanging security claims among multiple parties? 

 How much safer and more secure are devices when developers and analysts use 
the tools and techniques? 

 How much faster can faults be fixed and the device be recertified by using the 
tools and techniques?    

It may be useful to apply this kind of analysis to the building code itself to assess 
whether the application of the code yields the desired security properties.  
B. Using eliminative arguments  
Analysts who use this technique try to increase the confidence in a security assertion 
by posing counter-examples and then presenting evidence that eliminates as many 
counter-examples as possible.  When a counter-example cannot be eliminated 
completely, the evidence can provide bounds on the potential impact of the counter-
example.  While assurance cases have been used successfully in the safety domain, 
they have not been used as much in the security domain.  Also, the strength of any 
eliminative argument depends on the completeness of the set of posited counter-
examples.  No work has been done to identify security-related counter-examples for 
medical devices. 
 

2. Minimization of computational power exposed to inputs 
While it seems intuitive that adopting a formal, language theoretic approach to 
analyzing and limiting the computational power associated with device inputs, there 
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is no strong evidence confirming this intuition.  Moreover, there are not yet 
techniques and tools that developers can use to limit inputs or that evaluators can use 
to assess size of the gap between what computational power the inputs must provide 
and the power they actually provide.   
 

3. Protection of critical state data  
An attacker who gains access to critical state data can wreak havoc in many ways, 
such as collecting or modifying data, changing program execution, or even seizing 
complete control of the device.  Although workshop participants suggested several 
forms of protection that might be applicable (encryption, code obfuscation, oblivious 
computing), there was no consensus that any of these techniques would actually work 
in the context of medical devices. 
 

4. Risky module identification  
Software engineering research has produced techniques to identify error-prone 
software modules based on problem reports and software development records.  It is 
possible these or similar techniques will be useful in assuring classes of security 
vulnerabilities are absent in medical device software, but the evidence remains to be 
generated.  

 
5. Runtime detection of code tampering via anti-tamper / anti- corruption 

mitigation techniques 
Digital signatures can provide assurance that code that is loaded has not been altered 
but after the signature has been checked and the code is executing, it may be subject 
to attack. Some hardware/software mechanisms have been devised to continue to 
check software while it is running; application of such mechanisms to medical device 
software is a topic for study.  

 
6. Trusted computing base for medical devices 

The notion of a Trusted Computing Base (TCB), comprising the hardware and 
software in system that is responsible for enforcing the security policy, is a well-
established. The challenge is to build a system of significant size in which the TCB is 
kept small. In many systems today, the TCB is the entire system – an exploitable 
vulnerability anywhere in the system can lead to a compromise of the security policy. 
It may be possible to develop a TCB for platforms used in medical devices that would 
support the kinds of security policies these devices require, but little if any research 
has been performed on this topic as yet. Different device classes may require different 
TCBs.  In principle, it should be possible for vendors and evaluators to agree on a 
common TCB that could be tailored for different device classes.  

 
7. Notations that expose cyber mitigations (like insulation diagrams) 

In designing physical buildings, different types of diagrams are generated. Some 
show the physical dimensions and composition of walls and foundations, for 
example. Others show plumbing, wiring, and heating/ventilation functions. Similarly 
a logical circuit diagram may illustrate the logical paths for signals and data in a 
computational component without showing the physical routing and the insulation 
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along paths. To carry out a proper failure analysis for a circuit board, both the logical 
and physical diagrams are needed. Are there any similarly useful diagrams in the 
context of software that might reveal, for example, what effects breaking through one 
security barrier might be? Are there realistic diagrams that can convey the true 
“depth” of a set of defenses? 
 

8. Compiler-based integer overflow protection.  
Techniques such as “As-if Infinite Range” integer models (specifically for C and C++ 
languages) have been developed and prototyped but have not been incorporated in 
production compilers as yet. Some some safe integer computation libraries are 
available for use with existing compilers. 
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Appendix C 
 

Mapping Between BCforMDSS Categories and Code Elements to NIST 
Cybersecurity Framework 

 
NIST Framework for Improving Critical Infrastructure Cybersecurity  
<http://www.nist.gov/cyberframework/upload/cybersecurity-framework-021214.pdf> 

 
 
On Feb 12, 2014, National Institute of Standards and Technology (NIST), released a 
report entitled Framework for Improving Critical Infrastructure Cybersecurity in response 
to Executive Order 13636 (EO), "Improving Critical Infrastructure Cybersecurity," issued 
by President Obama a year earlier. E.O. 13636 called for the development of a voluntary 
Cybersecurity Framework to provide "a prioritized, flexible, repeatable, performance-
based, and cost-effective approach" to manage cybersecurity risks.  While this report was 
not prepared specifically for the medical device industry, the FDA hosted a NIST 
presentation of it at their Cybersecurity Public Workshop, “Collaborative Approaches for 
Medical Device and Healthcare Cybersecurity,” October 21-22, 2014.  In addition, the 
FDA's guidance document on Content of Premarket Submissions for Managment of 
Cybersecurity in Medical Devices, issued October 2, 2014, is built around the same key 
principles of Identify, Protect, Detect, Respond, and Recover.  
 
The Building Code Workshop focused on the Protect category but generated some 
elements that fall in other categories as well. Provided below are mappings from the 
NIST categories to the proposed Building Code elements and vice versa. 
 
NIST Category Definitions 
• Identify – Develop the organizational understanding to manage cybersecurity risk to 
systems, assets, data, and capabilities. The activities in the Identify Function are 
foundational for effective use of the Framework. Understanding the business context, the 
resources that support critical functions and the related cybersecurity risks enables an 
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organization to focus and prioritize its efforts, consistent with its risk management 
strategy and business needs.  
Examples of outcome Categories within this Function include: Asset Management; 
Business Environment; Governance; Risk Assessment; and Risk Management Strategy. 
• Protect – Develop and implement the appropriate safeguards to ensure delivery of 
critical infrastructure services. The Protect Function supports the ability to limit or 
contain the impact of a potential cybersecurity event.  
Examples of outcome Categories within this Function include: Access Control; 
Awareness and Training; Data Security; Information Protection Processes and 
Procedures; Maintenance; and Protective Technology. 
• Detect – Develop and implement the appropriate activities to identify the occurrence of 
a cybersecurity event. The Detect Function enables timely discovery of cybersecurity 
events.  
Examples of outcome Categories within this Function include: Anomalies and Events; 
Security Continuous Monitoring; and Detection Processes. 
• Respond – Develop and implement the appropriate activities to take action regarding a 
detected cybersecurity event. The Respond Function supports the ability to contain the 
impact of a potential cybersecurity event.  
Examples of outcome Categories within this Function include: Response Planning; 
Communications; Analysis; Mitigation; and Improvements. 
• Recover – Develop and implement the appropriate activities to maintain plans for 
resilience and to restore any capabilities or services that were impaired due to a 
cybersecurity event. The Recover Function supports timely recovery to normal operations 
to reduce the impact from a cybersecurity event.  
Examples of outcome Categories within this Function include: Recovery Planning; 
Improvements; and Communications. 
 
Map from NIST to BCMDSS 
 
NIST Framework Categories  Items Proposed for BCMDSS  

Identify  

Protect A.1-3. B.1-9, C.1-3, D.1-2 

Detect C.1-3, E.1 

Respond  

Recover  
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Map from BCMDSS to NIST 
 
BCMDSS Categories NIST Framework 

Categories 

 Items Proposed 

for BCMDSS  

A. Items intended to remove / avoid flaws 

at the design stage 

 Protect A.1, A.2, A.3 

B. Items intended to avoid / detect / 

remove  specific types of vulnerabilities at 

the implementation stage 

 Detect and Protect B.1-B.9 

C. Items intended to assure software / 

firmware provenance but not necessarily 

remove flaws in code 

 Detect and Protect C.1, C.2, C.3 

D. Items intended to impede attacker 

analysis or exploitation but not 

necessarily remove flaws 

Protect D.1, D.2 

E. Items intended to enable detection / 

attribution of attack 

 Detect E.1 

F. Items intended to assist in safe 

degradation of function in face of attack 

 Respond  

G. Items intended to assist in restoration 

of function after attack 

 Recover  

H. Items intended to support maintenance 

of operational software without loss of 

integrity 

 Protect C.2 

I. Items intended to support privacy 

requirements 

Protect  

X. Characteristics desired of the building 

code itself (e.g. std use of names, 

maintenance of the building code over 

time, scope) 
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Appendix D 
 

Call For Participation 
 

Call for Contributions and Participation 
NSF/IEEE-CS Invitational Workshop to  

Create A Building Code for Medical Device Software Security 
November 19-21 2014 

Hyatt French Quarter, New Orleans 
 
1. Purpose 
 
The aim of this workshop is (1) to establish an initial consensus among industry and 
academic participants on the appropriate components of a “building code” that would be 
appropriate to reduce significantly the vulnerability of medical devices to malicious 
attacks, and (2) to establish a research agenda for the creation of evidence that could 
justify the inclusion of additional elements in such a code. The workshop will be held 
under the auspices of the IEEE Computer Society’s Cybersecurity Initiative, with 
participation from NSF’s Trustworthy Health and Wellness (THaW) project; additional 
support is being sought from the NSF Secure and Trustworthy Cyberspace program. 
 
2. What might a building code for medical device software security look like? 
 
Building codes applied to physical structures generally grow out of industry and 
professional society groups – suppliers, builders and architects – rather than from 
government, although adoption of codes by government provides a legal basis for 
enforcement.  Building codes generally apply to designs, building processes, and the 
finished product. Code enforcement relies on inspections of structures during 
construction and of the finished product and also on certification of the skills of the 
participants in the design, construction, and inspection processes. Codes also take account 
of different domains of use of structures: code requirements for single-family dwellings 
differ from those for public buildings, for example. 
 
Following the ideas expressed in [1] we aim to develop an analog to these processes that 
will improve assurance that software developed for the domain of medical devices will be 
free of many of the security vulnerabilities that plague software generally.  Evidence to 
date is that a large fraction of exploitable security flaws are not design flaws but rather 
implementation flaws. An initial building code for medical device software security could 
focus on assuring that the final software that operates the device is free of these kinds of 
flaws, although it could address aspects of the development process as well.  For 
example, the code might specify that modules written in a language that permits buffer 
overflows be subject to particular inspection or testing requirements, while modules 
written in type-safe languages might require a lesser degree of testing but a stronger 
inspection of components that translate the source language to executable form.  
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3. Considerations for including a particular requirement in a building code for 
medical device security 
1. Effectiveness. The first criterion should be the ability of the required item to reduce the 
vulnerability of software to exploitation. Specific evidence should be available to support 
claims of effectiveness. 
2. Ease of evaluation.  Requirements that are effective but require unusual expertise, 
time, or other resources to evaluate are not appropriate for inclusion in the code. 
3. Scope. Requirements affecting only a narrow scope of vulnerabilities may not be 
appropriate to incorporate.  
 
4. Participants sought 
To succeed, the workshop needs participation from (1) industry personnel familiar with 
the architecture and tools used to build medical devices and the software that controls 
them, (2) people familiar with the history of medical device regulation in general and 
people familiar with the history of computer security regulation, (3) researchers and 
practitioners familiar with cybersecurity issues generally and with security issues in 
medical device software in particular, and (4) experts in relevant aspects of software 
engineering, including requirements, design, and (especially) implementation, test, and 
validation/verification methods. 
 
5. Workshop organization and products 
The meeting will be organized as two-day event with approximately 40 invited 
participants, starting in the evening of the first day (Nov. 19) and ending in the afternoon 
two days later (Nov 21). The meeting will open with a dinner session accompanied by an 
invited talk or panel on the history and current state of official guidance on the security of 
medical device software.  The next day will open with a general talk on the concept of a 
building code for security-critical software that will address the types of requirements a 
building code might include and the possible basis for deciding whether a particular 
element should be included in the code. Following this introduction, a series of short talks 
proposing possible elements of the code will be presented, based on submissions received 
in advance of the meeting.  
 
In afternoon breakout sessions, the participants will be asked to discuss the proposed 
elements and to assess the strength of the evidence for including each proposed item in 
the code. When the group consensus is that stronger evidence is needed, research topics 
that might help establish that evidentiary basis will be identified.  At the end of the 
afternoon, groups will report on their progress in a brief plenary session.   
 
The breakout sessions will reconvene on the final morning of the workshop to consider 
the results of the plenary session and any evening discussions. The meeting will close 
with a two-hour plenary session in which consensus on an initial building code and 
research agenda will be sought.  
 
Following the meeting, the chair and vice-chair, in consultation with the workshop 
participants and Steering Committee will develop a report on the workshop documenting 
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the initial draft building code and research agenda. The report be placed on a George 
Washington University website and will be published by the IEEE as well.  
 
6. Where to send your contribution / request for invitation 
If you are interested in participating, please send a note of not more than 600 words 
explaining (A) which of the four groups listed above you would represent and (2) at least 
one requirement you think would be appropriate to discuss at the workshop as a candidate 
for an initial building code, as well as evidence supporting the effectiveness of that 
requirement. If you are interested in the workshop but don’t have a specific element to 
propose, please include a description of your role in medical device software 
development or in assuring software security. E-mail this information to:  
BCforMDSS@gmail.com  
 
7. Travel Support 
Support for those requiring reimbursement of travel, lodging, and meal expenses is 
expected to be available from the workshop sponsors. 
 
8. Reference 
1. Landwehr, C. E. “A Building Code for Building Code: Putting What We Know Works to 
Work,” Proc. 29th Annual Computer Security Applications Conference (ACSAC), New 
Orleans LA., ACM, NY, pp.139-147. Available at:  
http://www.landwehr.org/2013-12-cl-acsac-essay-bc.pdf  
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Appendix E  
 

Workshop to Develop a Building Code for Medical Device Software 
Security 

Workshop Agenda Nov. 19-21, 2014 

 
Time     Event  Participants  Location 

Wed. 11/19    
6:00 PM  Arrival      All workshop 

participants    
Hyatt Regency 
French Quarter, 
New Orleans 

6:30 PM  Registration / Pre-dinner reception  All workshop 
participants 

 

7:00 PM  Dinner  All workshop 
participants 

 

8:30 PM      Talk 1: History of medical device software and 
approaches to regulation 

 Speaker: Anura 
Fernando, UL  

 

9:15 PM  Talk 2: History of software security and 
approaches to regulation 

 Speaker: Steve 
Lipner, 
Microsoft  

 Atrium 

10:00 PM  Adjourn   
    
Thurs. 11/20    
7:00am  Breakfast available  All 

participants    
Holmes Foyer 

8:00 AM  Introduction of the participants and outline of 
the workshop 

 Carl Landwehr Holmes BC 

8:45 AM  Proposed building code element talks  Category B items  
  Automated Memory Safety Error Mitigation     John Criswell   10 min. 
  Automated Analysis of Binaries  Marijn Heule / 

Warren Hunt     
 10 min. 

  Language Subsetting  Paul Anderson  10 min. 
  Operational Use Case Documentation to 

Eliminate Unused Functions 
 Scott Erven  10 min. 

  Modified Condition Decision Coverage  Rick Kuhn  10 min. 
  Several language and analysis-related items  Robert Seacord  25 min. 
 10:00 am     Morning Break   
 10:30 am  Talks continue  Category A, C, 

D, etc. items 
 

  Full recognition of inputs / minimization of 
computation power exposed to inputs 

 Sergey Bratus  15 min. 

  Assurance Cases using OMB Structured 
Assurance Case Metamodel based tooling 

 Robert Martin  10 min. 

  Security Assurance Cases Using Eliminative 
Arguments 

 Chuck 
Weinstock 

 10 min. 

  Design stage threat modeling / attack surface 
reduction 

 Scott Erven  10 min. 

  Non executable data pages  Jeremy Epstein  10 min. 
  Protection of critical state data  Sol Greenspan  10 min. 
  3 anti-tamper, obfuscation related items  Jonathan Carter  15 min. 
    
 12:00 noon  Lunch   Holmes Foyer 
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 1:00 pm     Breakout groups convene  maximum 8 per 
group 

 Holmes A, B, C 
(separated) plus 
Dauphine A&B 

 3:00 pm  Afternoon Break   
 3:15 pm  Breakouts continue   
 4:00      Breakouts conclude; reconfigure space for 

plenary 
  

 4:10 pm  Plenary presentations / discussion  Breakout group 
leads report on 
conclusions, new 
proposals 

Holmes BC  

 5:10 pm      Discussion period if needed   
 5:30 pm  Adjourn   
  Group leads / steering  Coordination 

meeting 
 Dauphine A 

 6:30 pm  Reception   Batch  
 7:00 pm  Dinner   Redfish Grill 
    
 Fri. 11/21    
 7:00 am  Breakfast available   Orleans Foyer 
9:00 AM  Plenary discussion   Holmes BC 
 9:30 am  Breakouts re-convene   As before 
 10:00 am  Morning break, check out   
 10:30 am  Breakouts re-convene   
 11:20      Breakouts conclude; reconfigure for plenary   
 11:30 am  Closing plenary  Holmes BC 
 12:30 pm  Box lunches and departure   
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Appendix F 
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 29  

Appendix G 
 

Process 
 

In advance of the workshop, participants were invited to propose elements for inclusion 
in the building code. A public website was created to host materials generated by the 
organizers and submitted by the participants. It was also possible for interested 
individuals who were unable to attend the workshop to submit proposed elements. A 
collective e-mail address was also established for the workshop participants shortly 
before the meeting. By the time of the meeting, 35 specific elements had been placed on 
the website as proposed code elements.   
 
The workshop itself opened with two general talks, one from an expert in the history of 
medical device history and regulation and one from an expert in the history of computer 
security technology and regulation, as a way to help participants coming from different 
fields establish a common basis for discussion. 
 
The goal of the workshop was to enable presentation and discussion of each submitted 
element by the 40 participants and lead to a consensus set of elements for the building 
code. The original plan was to allow the proposer of each element to present it to the 
entire group and then break into smaller groups (maximum of 8 in a group) to allow 
parallel discussions of all proposed elements and let each group establish a consensus on 
which elements belonged in the code and which required further research to justify their 
inclusion. 
 
With 35 proposed elements and a workshop length of less than 48 hours, it was infeasible 
to present all the elements in plenary session and retain the time needed for discussion. 
To focus the presentations on the items that seemed most likely to be contentious, the 
chair and vice-chair identified four elements that seemed very likely to be included in the 
code and seven elements that seemed relatively unlikely to be included or lacked 
individuals to present them. The 24 remaining elements were grouped for presentation 
using the set of categories found in Appendix A, Section VI. Following the presentations, 
the participants divided into five parallel discussion groups to review the proposed 
elements (including those not presented) in more detail to see if a consensus existed for 
including each specific element. To assure full coverage, each group was assigned a 
different starting point in the full list of 35 proposed elements and specifically tasked to 
first discuss the seven elements in their portion of the list and then broaden the discussion 
to other elements. In fact, most groups devoted most of their time to their assigned seven 
elements and then discussed other elements that were of particular interest to group 
members.  
 
Following report-outs from each of the group leaders at the end of the day, the group 
leaders, workshop vice-chair, and workshop chair reviewed the list again and established 
a consensus list of 18 elements to be included in the code. In some cases, it was agreed 
that related elements should be consolidated into a single element, or that a very specific 
element might be generalized. 
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In the final morning of the workshop, each discussion group reviewed the entire 
consensus list, which had been winnowed to 18 elements, and established a consensus 
“top ten” list from it. These consensus lists were combined to see whether there were 
particular elements that might be dropped from the code. Since every element save one 
appeared in at least one of the consensus “top ten” lists, the entire set of 18 is retained in 
this report.  Nine other proposed elements were placed on the research agenda as having 
potential value but requiring further research to validate this potential. These results are 
captured in Appendix A and Appendix B. 
 
The chair drafted an initial version of this report in the week following the workshop. The 
vice-chair provided comments and suggestions that resulted in a second draft circulated 
to the Group Leaders and a few members of the Steering Committee. The comments from 
those individuals have been incorporated in this final version of the report. 
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