
Building Code for Medical
Device Software Security
Tom Haigh and Carl Landwehr

http://www.computer.org
http://www.ieee.org
http://cybersecurity.ieee.org/

Introduction ... 4
Purpose ... 6
Scope and Applicability 7
Definitions .. 7
Procedures ... 8
Elements of the Code, by Category 9

Elements intended to avoid/detect/
remove specific types of vulnerabilities
at the implementation stage (A) 9
Elements intended to assure
proper use of cryptography (B) 13
Elements intended to assure software/
firmware provenance and integrity,
but not to remove code flaws (C) 14
Elements intended to impede attacker
analysis or exploitation but not
necessarily remove flaws (D) 15
Elements intended to enable detection/
attribution of attack (E) 17
Elements intended to assist in safe
degradation of function during an attack (F) .. 17
Elements intended to assist in
restoration of function after attack (G) 17
Elements intended to support
maintenance of operational software
without loss of integrity (H) 17

Elements intended to support
privacy requirements (I) 17
Desired characteristics of the building code, for
example, standard names use, building code
maintenance over time, and scope (X) 17

Conclusion ... 18
Acknowledgments 18

Appendix A. Research Agenda
for Medical Device Software Security 20

Assurance cases using the Object
Management Group’s Structured Assurance
Case Metamodel based tooling 20
Minimization of computational
power exposed to inputs 20
Protection of critical state data 21
Risky module identification 21
Runtime detection of code
tampering via antitamper/anticorruption
mitigation techniques 21
Security assurance cases using
eliminative arguments 21
Trusted computing base 21
Notations that expose cyber mitigations
(such as insulation diagrams) 22
Compiler- based integer overflow protection ... 22

Appendix B. List of Participants 23

2

TA B L E O F C O N T E N T S

3

Public Access Encouraged

Because the authors, contributors, and publisher are eager to engage the broader
community in open discussion, analysis, and debate regarding a vital issue of
common interest, this document is distributed under a Creative Commons BY-
SA license. The full legal language of the BY-SA license is available here: http://
creativecommons.org/licenses/by-sa/3.0/legalcode.

Under this license, you are free to both share (copy and redistribute the material in
any medium or format) and adapt (remix, transform, and build upon the material for
any purpose) the content of this document, as long as you comply with the following
terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may use any reasonable citation format, but the
attribution may not suggest that the authors or publisher has a relationship with you
or endorses you or your use.

“ShareAlike” — If you remix, transform, or build upon the material, you must
distribute your contributions under the same BY-SA license as the original. That
means you may not add any restrictions beyond those stated in the license, or apply
legal terms or technological measures that legally restrict others from doing anything
the license permits.

Please note that no warranties are given regarding the content of this document.
Derogatory use of the content of this license to portray the authors, contributors, or
publisher in a negative light may cancel the license under Section 4(a). This license
may not give you all of the permissions necessary for a specific intended use.

Staff

Kathleen Clark-Fisher, Manager, New Initiative Development
Jennie Zhu-Mai, Designer

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.ieee.org
http://www.computer.org
http://cybersecurity.ieee.org/

4

Introduction

P hysical buildings are a well-established met-
aphor for software systems.* From the time

of Hammurabi, building codes have provided a
basis for assuring that buildings stand up to the
demands of their environments. In modern times,
building practices frequently arise from interact-
ing communities of architects, builders, and sup-
pliers rather than originating with a national au-
thority. Once the practices are organized into a
code, local governments may adopt it to place
the force of law behind it for the common good.

The elements presented here aim to start
builders of software for medical devices down the
road toward a building code for software security
that will reduce the vulnerability of their systems
to malicious attacks, just as codes for physical
buildings help their designers and builders create

* 2015 Turing Award Leslie Lamport’s recent article, “Who Builds a House
Without Drawing Blueprints?” (CACM, April, 2015, pp. 38-41) provides a recent
example. One of the authors of this report (Landwehr) explores the metaphor in
more detail in “A Building Code for Building Code,” Proc. ACSAC 2013.

structures that resist threats from fire, wind, wa-
ter and, in some cases, malicious attacks.

These elements and the structure of the
code that organizes them were created by a
group of 40 volunteers with a wide range of
backgrounds, including cybersecurity, program-
ming languages, software engineering, medical
device development, medical device standards,
and medical device regulation. Following sever-
al weeks of online collaboration, the group con-
vened for two intense workshop days in New
Orleans in November, 2014, under the sponsor-
ship of the IEEE Cybersecurity Initiative and the
National Science Foundation.** Carl Landwehr
of George Washington University and Tom Haigh
of Adventium Labs (ret.) organized and led the
workshop.

During the workshop, the participants pro-
posed and evaluated a set of elements for an

** NSF Grants NSF CNS 14-52113 and NSF CNS 13-30491.

5

I N T R O D U C T I O N

initial building code. Some of these elements
are mature in that their application delivers clear
benefits, there are well-understood methods for
applying them, and there are accepted ways to
measure the degree to which they have been ap-
plied. Other elements are more speculative, re-
quiring further study to establish their effective-
ness, methods of application, or measure of the
quality of application. Participants also proposed
research topics that could address the deficien-
cies in these proposed elements.

Following the workshop, the authors or-
ganized the mature elements into the “Draft
Building Code for Medical Device Software
Security” presented in this report. They also re-
fined the research topics, which are listed in
Appendix A to this report.

It is of course impossible to develop a com-
plete code in a two-day workshop. The intent
of this initial code is to provide a basis that

developers can use to rule out the most com-
monly exploited classes of software vulnerabili-
ties. To accomplish this, the participants chose
to focus on code elements intended to avoid/
detect/remove specific types of vulnerabilities in-
troduced in the implementation phase, because
implementation errors continue to be the ma-
jor source of exploits. This draft code should be
considered a starting point for a more complete
code. While some elements of the draft code
presented here address the design and test
phases, there is a clear need for further effort to
expand those aspects of the code.

Tom Haigh
Adventium Labs (ret.)

Carl Landwehr
George Washington University

6

Purpose

T his building code provides a basis for reducing
the risk that software used to operate medical

devices is vulnerable to malicious attacks. Such
attacks might impede or alter a device’s function,
leak sensitive data, or otherwise cause the device
to depart from its specified behavior. Some codes
begin as standards and only become codes when
they are adopted legally and have the force of law
behind them. Others, such as the International
Building Code (see http://publicecodes.cyberregs
.com/icod/ibc/), act as model codes that can be
tailored for different environments and adopted le-
gally by different jurisdictions. The code present-
ed here is intended as the beginning of a model
code for software security.

The aim in specifying this code is not to as-
sure that future medical devices can resist ev-
ery imaginable attack, but rather to establish
a consensus among experts in medical devic-
es, cybersecurity, and computer science on a

reasonable model code for the industry to ap-
ply. Metaphorically, the aim is to specify the
needed properties of the bricks used to build
the structure, not its architecture. The reason
for focusing on the “bricks” at this time is that
the majority of vulnerabilities actually exploit-
ed in cyberattacks are errors in implementation
rather than design. By focusing on the desired
implementation properties, this code aims to
ensure that these bricks are indeed sound in
that they are free of most vulnerabilities cur-
rently exploited.

Proper architecture and design are, of course,
critical for the safety, usability, maintainability,
and effectiveness of these systems, and respon-
sible developers need to apply sound methodol-
ogies to every construction phase, from require-
ments through final testing and delivery. The
IEEE Cybersecurity Initiative is addressing archi-
tecture and design concerns in other efforts.***

*** “Avoiding the Top 10 Software Security Design Flaws,” IEEE Center for Secure
Design, IEEE Cybersecurity initiative, cybersecurity.ieee.org

http://publicecodes.cyberregs.com/icod/ibc/
http://publicecodes.cyberregs.com/icod/ibc/

7

Scope and Applicability

T he code applies to software that operates or
executes within the context of a broad range

of medical devices. It was not developed with
other software domains (for example, software
controlling automobiles, or software in large-
scale IT systems) in mind, although those do-
mains might well benefit from a similar code.
The present code focuses on the creation of
software that is difficult to subvert through mali-
cious inputs or errors in cryptographic functions.
It does not address other security functions—for
example, authentication, authorization, and audit-
ing (although security logging is included). There

are many different types of medical (and more
broadly, healthcare) computing devices, including
implantable and wearable, as well as hospital
bedside and large diagnostic equipment. These
device types have different computing capaci-
ties and energy sources. A mature building code
might well allow or require variations according
to the particular device type covered and its ca-
pabilities and operating environment, but such
differences, particularly in terms of analysis of
the software developed for the device, would
need to be justified. These considerations are
beyond the scope of the code presented here.

Definitions

T he term medical device is used loosely in
this document. It might refer to an implant,

a wearable device (sometimes called a health
management device), a bedside device in a hos-
pitable, a large- scale diagnostic device such
as an MRI system, or even an electronic health
record system. These device types cover a
broad range of technologies, complexities, and

environments. The practical adoption of a code
such as the one proposed here should include a
more precise specification of the device charac-
teristics to which it is intended to apply. It might
be that the code should be tailored to different
devices and to environments where the device
is used. These contingencies could not be ad-
dressed in this preliminary version.

8

Procedures

I f a developers’ consortium, a standards body,
or a regulatory agency were to adopt this code,

it would be necessary to specify a number of
procedures. For example:

• How will a software component be eval-
uated to determine if it meets the code?
What about a system comprising many
components?

• Who will decide if the submitted component
satisfies the code? Companies producing or
using software might self- certify that their
software satisfies the code, but such asser-
tions should be subject to impartial review by

an outside group.
• How will the code be modified over time? The

group administering the code should be able
to update it through a voting or consensus
process as conditions warrant.

• How will legacy devices be handled?

Specifying these procedures is beyond the scope
of this document. Nevertheless, the procedures
for evaluating whether a specified piece of soft-
ware satisfies many of the code elements provid-
ed here is intended to be within the state of the
art, and often within the state of the practice.

9

Elements of the Code, by Category

T he elements in the code are organized into
10 lettered categories, A through I and X,

which are intended to be reasonably compre-
hensive. Several placeholder categories that re-
late more to design than implementation are left
empty.

For each code element, four subsections are
provided:

• Description. What is the meaning and pur-
pose of this element?

• Vulnerabilities addressed. What vulnerability
types will be reduced if this element is imple-
mented properly?

• Developer resources required. What resourc-
es will the individual or organization develop-
ing the software/device require to satisfy this
element?

• Evaluator resources required. What is re-
quired for a third party to assess whether the
device satisfies this element?

Elements intended to avoid/detect/
remove specific types of vulnerabilities
at the implementation stage (A)
This section opens with several items related to
programming language selection, use, and analy-
sis and then proceeds to other topics.

Several building code elements aim to reduce

vulnerabilities by controlling the selection and
use of programming language. Languages such
as C and C++ are widely used because they pro-
vide programmers with flexibility, perceived effi-
ciency, and compatibility with large bodies of leg-
acy software. However, these languages are also
conducive to mistakes that are difficult to find
and that provide attackers with vulnerabilities to
exploit. Of particular interest is the loosely de-
fined property of memory safety, which is defined
informally2 as the prevention of memory access
errors of the following types:

• buffer overflow,
• null pointer dereference,
• use after free,
• uninitialized memory use, and
• illegal free (of an already freed point-

er, or a not malloced pointer).

For a broad discussion of these issues,
the reader is referred to other work.3 This
code contains a more limited set of elements
deemed most important for medical device
software.

Use of memory- safe languages
• Description. Some programming languages

are designed to prevent many of the memory

10

access errors listed previously. Selecting
such a language effectively rules out large
classes of these vulnerabilities.

• Vulnerabilities addressed. Addresses memo-
ry safety vulnerabilities including buffer over-
flow, null pointer dereference, use after free,
uninitialized memory use, and illegal free.

• Developer resources required. Requires pro-
grammers trained in the selected language,
compilers, and runtime libraries for the
language.

• Evaluator resources required. Requires the
ability to recompile the source code using a
compiler for the memory- safe language (to
confirm that the object modules have been
produced as claimed).

Language subsetting
• Description. To reduce the possibility that

known exploitable language constructs will
occur in programs, the developer restricts im-
plementers to use only a subset of language
features or constructs, avoiding those known
to be risky or ambiguous. Use of a restricted
subset of a language might also improve per-
formance of static analysis tools on the
software. Subsets of several languages, in-
cluding C (MISRA C, see http://www.misra- c
.com), Ada (SPARK Ada, see http://www
.spark- 2014.org/about), are available.

• Vulnerabilities addressed. Addresses memory
access and other weaknesses resulting from

the use of the proscribed constructs.
• Developer resources required. Requires pro-

grammers trained in subset use, as well as
code scanners to enforce subset constraints.

• Evaluator resources required. Requires ac-
cess to source code and scanning tool
to confirm that programs abide by subset
constraints.

Use of secure coding standards
• Description. To reduce the possibility of ex-

ploitable vulnerabilities in languages suscep-
tible to memory access errors, but without
restricting programmers to a language sub-
set, adherence to standard usages of the lan-
guage structures should be required. Using
the standard can reduce the possibility of
memory access and other exploitable errors
substantially. Secure coding standards are
available for C, C++ and Java.

• Vulnerabilities addressed. Addresses memory
access and some other types of implementa-
tion errors.

• Developer resources required. Requires pro-
grammers trained in coding standard use,
and software to check programs produced for
conformance to the standard.

• Evaluator resources required. Requires source
code and automated checker for confor-
mance to standards. If conformance cannot
be mechanically checked, manual auditing
might be required.

E L E M E N T S O F T H E C O D E

http://www.misra-c.com
http://www.misra-c.com
http://www.spark-2014.org/about
http://www.spark-2014.org/about

11

E L E M E N T S O F T H E C O D E

Automated memory safety error mitigation and
compiler- enforced buffer overflow elimination
• Description. For software written in non-

memory- safe languages (for exam-
ple, C/C++), use compiler transforms
that enforce memory safety (for exam-
ple, SAFECode,4 WIT,5 Baggy Bounds
Checking,6 and SoftBound7). Develop pol-
icy on what to do when a runtime error is
detected (for example, reset device).

• Vulnerabilities addressed. Addresses memory
access errors.

• Developer resources required. Requires ac-
cess to software checking tools and source
code.

• Evaluator resources required. Requires the
ability to rerun tools used by the developer
on the source/binary; confirming that an ap-
propriate compiler has compiled all the soft-
ware with the instrumentation enabled.

Automated thread safety analysis
• Description. The developer annotates mul-

tithreaded code to declare desired thread
safety properties. Tool (compiler option) as-
sures that the policies are enforced.

• Vulnerabilities addressed. Addresses race
conditions and deadlocks.

• Developer resources required. Requires pro-
grammers capable of developing correct an-
notations, and access to a compiler capable
of processing them.

• Evaluator resources required. Requires the abil-
ity to determine that appropriate annotations
have been made (manual) and that all the soft-
ware was processed with the appropriate com-
piler and options (or recompile it) and the abili-
ty to review the specified safety policies.

Automated analysis of programs
(source/binary) for critical properties
• Description. Critical properties desired of a

binary (or source) program are specified pre-
cisely. The subject program is then analyzed
against a model embodying the semantics of
the (hardware/software) execution environ-
ment to verify that the desired properties are
present.

• Vulnerabilities addressed. Addresses any
vulnerability countered by the specified
properties.

• Developer resources required. Requires de-
velopers capable of specifying the proper-
ties desired of the implementation in the
language accepted by the verification tools in-
volved, or access to experts with this ability.

• Evaluator resources required. Requires the
ability to generate and review output of
verification tools applied to the programs
analyzed.

Modified condition decision coverage
• Description. This is a criterion for test cov-

erage that has been successfully applied to

12

life- critical avionics software for many years
and is part of standards for automotive, rail,
and process control systems. It requires a
specification of system behavior and testing
against that specification to achieve the fol-
lowing coverage:

• Each entry and exit point is invoked at
least once.

• Each decision has taken each possible
outcome at least once.

• Each condition in a decision takes on ev-
ery possible outcome at least once.

• Each condition is shown to independently
affect the outcome of the decision.

• This test coverage criterion subsumes
statement and branch coverage, requires
k + 1 tests for k conditions, and ensures t-
way combination coverage of at least (1 +
t)/2t.

• Vulnerabilities addressed. This is a general
tool for assuring implemented software per-
forms as designed. It is not targeted at de-
tecting specific vulnerabilities but has proven
effective for assuring safety in many life- criti-
cal systems.

• Developer resources required. Requires sys-
tem specification at a level of detail sufficient
to validate test results. The coverage criterion
demands extensive testing of the software and
might not be feasible for large code bases; it

is appropriate for life- critical medical software.
• Evaluator resources required. Requires re-

sources to review test results (some automa-
tion should be possible to see that test and
specification match) and assure fielded soft-
ware is the tested software.

Operational use case identification
and removal of unused functions
• Description. Use cases for the device are

specified and software components required
by each use case are identified. Software
not required by any use case is considered
for removal from the system to eliminate the
possibility of attacks exploiting software un-
needed for system function. Rather than a
detailed, line- by- line code level analysis, this
element can be applied most effectively at a
relatively high level of abstraction to be sure
that unused libraries, function collections,
and applications are eliminated.

• Vulnerabilities addressed. Addresses soft-
ware vulnerabilities located in unused
components.

• Developer resources required. Requires iden-
tification of a comprehensive set of use cas-
es (sometimes difficult in practice) and ability
to track each use case back to software re-
quired for it.

• Evaluator resources required. Requires man-
ual review of software components present
against the specified use cases.

E L E M E N T S O F T H E C O D E

13

Elements intended to assure
proper use of cryptography (B)

Accredited cryptographic algorithms
and implementation
• Description. Cryptographic algorithms that

resist serious analysis are notoriously dif-
ficult to invent and to program correctly.8
Organizations such as the National Institute
of Standards and Technology hold open
competitions to create cryptographic algo-
rithms. While different environments place
different requirements (for example, differing
amounts of energy and computational power
to devote to cryptography and different time
horizons for storing secrets), developers
should seek algorithms that have received
some external, open certification rather than
attempt to develop their own. If for some
reason suitable algorithms are not available
and invention is required (this should be a
last resort), developers should take care
to get expert review prior to adopting and
implementing their own crypto- algorithms.
Weaknesses in cryptography often come in
the implementation of the algorithm, key
management, and surrounding protocols.
Externally developed and certified implemen-
tations should be sought; custom implemen-
tations of cryptographic components require
careful vetting by experts.

• Vulnerabilities addressed. Addresses weak-
nesses in cryptographic algorithms and
implementations.

• Developer resources required. Requires ac-
cess to expertly vetted cryptographic algo-
rithms and implementations.

• Evaluator resources required. Requires the
ability to audit software for use with vetted
cryptography or to automatically verify im-
plemented cryptography against a vetted
specification.

Secure random numbers
• Description. Generating random numbers for

use in initializing pseudorandom number gen-
erators and cryptographic algorithms, using
them correctly, and avoiding reusing them
are challenging problems. Mistakes can nul-
lify even well- designed cryptographic mecha-
nisms. As advised in other work,8 developers
should adopt established approaches that
field experts have vetted rather than attempt-
ing novel solutions.

• Vulnerabilities addressed. Addresses ineffec-
tive cryptographic mechanisms.

• Developer resources required. Requires ac-
cess to vetted procedures for random num-
ber generation; might be platform- dependent.

• Evaluator resources required. Requires manu-
al review of design and code.

E L E M E N T S O F T H E C O D E

14

Elements intended to assure software/
firmware provenance and integrity,
but not to remove code flaws (C)

Digitally signed firmware and
provenance (supply chain)
• Description. Developer and integrator affix

a digital signature to software/firmware in-
stalled in a device. In case of subsequent
device malfunction or compromise, the sig-
nature of the software present at the time
of failure can be recomputed and compared
with the signature of the distributed version
to detect tampering.

• Vulnerabilities addressed. Addresses software
provenance, helping establish accountabil-
ity for fielded software. This element does
not aim to eliminate vulnerabilities in the
software/firmware.

• Developer resources required. Developer (or
third party) needs a signing key, to protect
that key, and to compute and store digital sig-
natures for the protected components.

• Evaluator resources required. Evaluator needs
to assure the integrity of signing mechanisms
and operational mechanisms for signature
verification.

Software/firmware update validation
• Description. The aim is to enable valid up-

dates to operational software while min-
imizing the possibility that the update

mechanisms can be subverted to install
fraudulent updates. The vendor applies an
encrypted checksum on the updated software
and then validates the checksum, via a trust-
ed path, at the time the update is applied.

• Vulnerabilities addressed. Addresses installa-
tion of fraudulent software updates and loss
of accountability to the system producer.

• Developer resources required. Developer (or
third party) needs a signing key, to protect
that key, and to compute and store digital sig-
natures for the updates it produces.

• Evaluator resources required. Evaluator needs
to assure the integrity of signing and opera-
tional mechanisms for signature verification.

Whitelisting
• Description. The aim is to avoid execution of

untrustworthy, possibly malicious, applica-
tions. Prior to execution of application soft-
ware, the software is checked against a list
of authorized applications (the whitelist).
Entering new applications in the whitelist is
a privileged operation, not under operator
control.

• Vulnerabilities addressed. Addresses execu-
tion of unvetted application software. The
mechanism does nothing to remove vulnera-
bilities from applications; it only assures that
the application to be executed is included on
the whitelist.

• Developer resources required. Requires that

E L E M E N T S O F T H E C O D E

15

the design and implementation include a wh-
itelisting mechanism and attendant software
to permit privileged users to update the wh-
itelist needs.

• Evaluator resources required. Requires manu-
al review of whitelisting mechanism specifica-
tion and implementation (if the mechanisms
are specified formally, automated assistance
is possible).

Elements intended to impede
attacker analysis or exploitation but
not necessarily remove flaws (D)

Nonexecutable data pages
• Description. Storage is divided into code seg-

ments that might be read or executed but not
written and into data segments that might be
read or written but not executed. Temporary
storage (stacks, heaps, and global variables)
is assigned to data segments and so cannot
be used by attackers to execute instructions.

• Vulnerabilities addressed. This element does
not eliminate vulnerabilities in software; it
does make it more difficult for the attacker
to exploit them. It does not prevent attack-
ers from using return- oriented programming
attacks.

• Developer resources required. Developer
needs to organize code to take advantage
of this structure and its supporting hard-
ware mechanisms. Note that just- in- time

compilation and other mechanisms designed
to develop and install code during operation
will pose problems.

• Evaluator resources required. Evaluator needs
to review the use of mechanisms for assign-
ing code and data to storage segments.

Full recognition of inputs before processing
• Description. A component that accepts an

input without checking its validity presents
a path that an attacker can probe. In gener-
al, designers should consider the input lan-
guage grammar and use the most restrictive
grammar consistent with required compo-
nent functions. Designers should then be
sure that inputs are checked for conformance
to that grammar before processing those
inputs.

• Vulnerabilities addressed. Addresses exploita-
tion of input- handling code by maliciously
crafted inputs.

• Developer resources required. Requires spec-
ification of input language, program source
code, and software framework for generating
recognizer for input language.

• Evaluator resources required. Requires audit
of software and its data language definitions
for adherence to the design principle. Audit
must identify the code that checks and han-
dles inputs immediately upon receipt, and
evaluate whether the checking code is com-
plete as a recognizer for a given definition of

E L E M E N T S O F T H E C O D E

16

valid and expected data, and isolated from
other functionality. With appropriate con-
straints on specification and implementation
languages and procedures, automation might
assist the review.

Least operating system privilege
• Description. The least- privilege principle calls

for the operating system to grant programs/
processes only those privileges required for
them to carry out their specified functions.9
Programs should be designed so that the
number of privileges needed and the amount
of time those privileges are needed is mini-
mized. Programs requiring root or administra-
tor privileges should use fine- grained oper-
ating system level privileges when available.
For those systems that allow enabling/dis-
abling of privileges (for example, effective
UIDs, effective and maximum privilege/capa-
bility sets, and so on), privileges should be
enabled only for those system calls needing
them. Privileges should be removed when no
longer needed.

• Vulnerabilities addressed. Addresses exploita-
tion of over- privileged processes.

• Developer resources required. Designers
must keep the principle in mind as they orga-
nize system components. Implementers must
abide by the constrained design and avoid

granting privileges in the implementation not
called for in the design.

• Evaluator resources required. Automated stat-
ic analysis can reveal whether privileges are
enabled only where specified. Manual analy-
sis is required to determine if the design ad-
heres to the principle.

Antitampering of hardcoded secrets/keys/
data within medical device software
• Description. Employ appropriate software/

hardware protections against malicious ob-
servation/modification of medical device
secrets by the device possessor. Solutions
relying solely on software (white box cryptog-
raphy) and solutions that exploit widely avail-
able hardware (trusted platform modules with
supporting software) are available.

• Vulnerabilities addressed. Addresses unautho-
rized access or deliberate modification of ap-
plication generated and/or managed data by
a malicious device owner. In particular, this
restricts side channel attacks.

• Developer resources required. Requires ac-
cess to appropriate software/hardware pack-
ages and expertise to apply them correctly.

• Evaluator resources required. Requires manu-
al review of application of the selected mech-
anisms; potentially requires red- team testing
to evaluate overall effectiveness.

E L E M E N T S O F T H E C O D E

17

Elements intended to enable
detection/attribution of attack (E)

Security event logging
• Description. Provide a tamper- resistant audit

trail for security- related events, such as soft-
ware installation, user authentication, and so
on).

• Vulnerabilities addressed. Addresses account-
ability by providing an after- the- fact trail for fo-
rensic analysis.

• Developer resources required. Requires iden-
tification of security related event types (for
example, authentications, privilege level
changes, and software updates), and imple-
mentation of tamper resistant, append- only
security event logs.

• Evaluator resources required. Requires man-
ual review of identified security related event
types and of design and implementation of
logging mechanisms and security event gen-
eration mechanisms.

Elements intended to assist in
safe degradation of function
during an attack (F)
None proposed. This is a design consideration.

Elements intended to assist in
restoration of function after attack (G)
None proposed. This is a design consideration.

Elements intended to support
maintenance of operational
software without loss of integrity (H)
This is a design consideration. However, it is re-
lated to software/firmware update validation un-
der the previous “Software/firmware update vali-
dation” element.

Elements intended to support
privacy requirements (I)
None proposed. This is a design consideration.

Desired characteristics of the building
code, for example, standard names
use, building code maintenance
over time, and scope (X)
Use within the code itself of standard names for
types of attacks/attack patterns and vulnerabil-
ities. There are no proposed standards at this
time.

E L E M E N T S O F T H E C O D E

18

Conclusion

T he draft building code presented here must
be viewed as the beginning, not the end, of

an effort to create a foundation for building med-
ical devices that are free of the most common-
ly exploited vulnerability types. For this work to
have real effect, it must be carried forward by
those with responsibilities for building and evalu-
ating medical devices and for creating the frame-
work of standards surrounding their development
and use.

Acknowledgments
The draft building code and research agenda pro-
vided in this report are the product of a two- day
invitational workshop convened in New Orleans,
19–21 November 2014. Forty people from a
wide range of backgrounds including medical de-
vice development, standards, regulation, cyber-
security research, programming languages, and

software engineering participated in the work-
shop. See Appendix B for the list of participants.

Support for the workshop was provid-
ed by the IEEE Cybersecurity Initiative (see
http://cybersecurity.ieee.org) and the National
Science Foundation’s Secure and Trustworthy
Cyberspace program, both directly (NSF CNS 14-
52113, Creating a Building Code for Medical
Device Software Security) and through the
NSF’s Trustworthy Health and Wellness project
(NSF CNS 13- 30491, Trustworthy Health and
Wellness).

Many people collaborated to create this
workshop and produce the results. The chair
and vice- chair, authors of this document, par-
ticularly want to thank the IEEE Cybersecurity
Initiative and the NSF for providing the funds
to support participant travel and expenses.
Kathleen Clark- Fisher, program director for the

http://cybersecurity.ieee.org

19

IEEE Cybersecurity Initiative, provided logisti-
cal support during the meeting, and Theresa
McNeill of IEEE was instrumental in making the
meeting arrangements. Katelyn Anders of the
Cyber Security and Policy Research Institute
at George Washington University assisted with
participant travel reimbursement. We are grate-
ful to the members of the workshop steering
committee for their encouragement and advice,
and particularly Pat Baird and Ken Hoyme who
provided helpful contacts and assisted in re-
cruiting participants. Most of all, we thank the
workshop participants for their contributions
both in advance of the workshop to the web-
site used to develop and coordinate the draft
building code and for their active collaboration
during the meeting.

References
1. C.E. Landwehr, “A Building Code for Building Code:

Putting What We Know Works to Work,” Proc. 29th

Ann. Computer Security Applications Conf. (ACSAC),

2013, pp.139–147; http://www.landwehr

.org/2013- 12- cl- acsac- essay- bc.pdf.

2. L. Szekeres et al., “SoK: Eternal War in Memory,”

Proc. 2013 IEEE Symp. Security and Privacy, 2013,

pp. 48–62; http://ieeexplore.ieee.org/xpl

/articleDetails.jsp?reload=true&arnumber=6547101.

3. Guidance to Avoiding Vulnerabilities in Programming

Languages through Language Selection and Use, ISO/

IEC TR 24772:2013, ISO/IEC, 2013.

4. M. Belk et al., “Fundamental Practices for Secure

Software Development,” 2nd ed., A Guide to the Most

Effective Secure Development Practices in Use Today,

8 Feb. 2011; http://www.safecode.org/safecode-

updates- guidance- on- secure- development- practices.

5. P. Akritidis et al., “Preventing Memory Error Exploits

with WIT,” Proc. 2008 IEEE Symp. Security and Privacy,

2008, pp. pp. 263–277.

6. P. Akritidis et al., “Baggy Bounds Checking: An

Efficient and Backwards- Compatible Defense against

Out- of- Bounds Errors,” Proc. 18th Usenix Security

Symp., 2009, pp. 51–100.

7. S. Nagarakatte et al., “SoftBound: Highly Compatible

and Complete Spatial Memory Safety for C,” Proc.

2009 ACM Sigplan Conf. Programming Language

Design and Implementation (PLDI), 2009.

8. IEEE Center for Secure Design, Avoiding the Top Ten

Security Flaws, 2014; http://cybersecurity.ieee.org

/images/files/images/pdf/CybersecurityInitiative

- online.pdf.

9. J.H. Saltzer and M.D. Schroeder, “The Protection of

Information in Computer Systems,” Proc. IEEE, vol.

63, no. 9, Sept. 1975, pp. 1278–1308.

C O N C LU S I O N

http://www.landwehr.org/2013-12-cl-acsac-essay-bc.pdf
http://www.landwehr.org/2013-12-cl-acsac-essay-bc.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6547101
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6547101
http://www.safecode.org/safecode-updates-guidance-on-secure-development-practices
http://www.safecode.org/safecode-updates-guidance-on-secure-development-practices
http://cybersecurity.ieee.org/images/files/images/pdf/CybersecurityInitiative-online.pdf
http://cybersecurity.ieee.org/images/files/images/pdf/CybersecurityInitiative-online.pdf
http://cybersecurity.ieee.org/images/files/images/pdf/CybersecurityInitiative-online.pdf

20

Appendix A. Research Agenda for
Medical Device Software Security

S everal of the elements proposed for the build-
ing code require further research before they

are included in the code. Some of these would
be valuable but there are not yet practical meth-
ods for applying them. Others are specified at
too high a level of abstraction for practical evalu-
ation without substantial human effort and inter-
pretation. Still others require additional research
to show their effectiveness. These elements are
listed and described here.

Assurance cases using the
Object Management Group’s
Structured Assurance Case
Metamodel based tooling
The Structured Assurance Case Metamodel
(SACM) provides a general method of stating
and analyzing security claims and for exchanging
these claims among vendors and providers. This,
or a similar, technique could have great value
as medical devices become more complex and
more highly connected. However, there is not yet
a convincing body of evidence that the current
SACM approach will prove effective for medical
devices. Research must be performed to apply
SACM and related tools to medical devices and

then to measure the effectiveness of the tools
and techniques. Questions to answer include:

• Which sorts of assurance properties for med-
ical devices can be established more easi-
ly using the tools and techniques, and what
sort of cost reduction can be achieved?

• How much do the tools and techniques re-
duce ambiguity and confusion when exchang-
ing security claims among multiple parties?

• How much safer and more secure are devic-
es when developers and analysts use the
tools and techniques?

• How much faster can faults be fixed and the
device be recertified by using the tools and
techniques?

Minimization of computational
power exposed to inputs
While it seems intuitive that there are bene-
fits to adopting a formal, language theoretical
approach to analyzing and limiting the compu-
tational power associated with device inputs,
there is no strong evidence confirming this in-
tuition. Moreover, there are not yet techniques
and tools that developers can use to limit inputs

21

A P P E N D I X A

or that evaluators can use to assess the gap
size between what computational power the in-
puts must provide and the power they actually
provide.

Protection of critical state data
An attacker who gains access to critical state
data can wreak havoc in many ways including
data collection or modification, modification of
program execution, or even seizure of complete
control of the device. Although there are several
forms of protection that might be applicable (en-
cryption, code obfuscation, and oblivious com-
puting), there is no compelling evidence that any
of these techniques would actually work in the
context of medical devices.

Risky module identification
Software engineering research has produced
techniques to identify error- prone software mod-
ules based on problem reports and software
development records. It is possible that these
or similar techniques will be useful in assuring
classes of security vulnerabilities absent in med-
ical device software, but there is currently no evi-
dence to support this hypothesis.

Runtime detection of code tampering
via antitamper/anticorruption
mitigation techniques
Digital signatures can provide assurance that
code has not been altered prior to load time, but

there is still a risk of modification after the sig-
nature has been checked and the code is exe-
cuting. Some hardware/software mechanisms
have been devised to check software while it
is running. Application of such mechanisms to
medical device software is a topic for study.

Security assurance cases using
eliminative arguments
Analysts who use this technique try to increase
the confidence in a security assertion by pos-
ing counter- examples and then presenting evi-
dence that eliminates as many counter- examples
as possible. When a counter- example cannot be
eliminated completely, the evidence can provide
bounds on the potential impact of the counter- ex-
ample. While assurance cases have been used
successfully in the safety domain, they have not
been used as much in the security domain. Also,
the strength of any eliminative argument de-
pends on the completeness of the set of posit-
ed counter- examples. No work has been done
to identify security- related counter- examples for
medical devices or for analyzing the complete-
ness of a set of counter- examples.

Trusted computing base
The notion of a trusted computing base (TCB)
is a well- established IT security construct.
Particularly for operating systems, there is a sol-
id understanding of the functionality and com-
ponents necessary for a TCB. However, little if

22

any research has been performed to identify the
functionality and components of a TCB for medi-
cal devices. It is quite likely that different device
classes will require different TCBs. In principle, it
should be possible for vendors and evaluators to
agree on a common TCB that could be tailored
for different device classes.

Notations that expose
cyber mitigations (such as
insulation diagrams)
In designing physical buildings, different types of
diagrams are generated. Some show the phys-
ical dimensions and composition of walls and
foundations, for example. Others show plumb-
ing, wiring, and heating/ventilation functions.
Similarly a logical circuit diagram might illus-
trate the logical paths for signals and data in a

computational component without showing the
physical routing and the insulation along paths.
To carry out a proper failure analysis for a circuit
board, both the logical and physical diagrams
are needed. There has been no effort to develop
analogous diagrams in the context of software
that might, for instance, reveal the potential ef-
fects of breaking through one or more security
barriers. Such diagrams could help convey the
true depth of a set of defenses.

Compiler- based integer
overflow protection
Techniques such as As- if Infinite Range inte-
ger models (specifically for C and C++ languag-
es) have been developed and prototyped but
have not yet been incorporated in production
compilers.

A P P E N D I X A

23

Appendix B. List of Participants
• Homa Alemzadeh, University of Illinois,

Urbana- Champaign
• Paul Anderson, Grammatech
• Sergey Bratus, Dartmouth College
• Tom Brennan, Proactive Risk, OWasp
• Ian Bryant, UK Trustworthy Software Initiative,

University of Warwick
• Blaine Burnham, University of Southern

California
• Jonathan Carter, Arxan Technologies, OWasp
• John Criswell, University of Rochester
• Jeremy Epstein, US National Science

Foundation
• Scott Erven, Protiviti
• Dale Fay, University of Michigan Radiology
• Anura Fernando, Underwriters Laboratories
• Brian Fitzgerald, US Food and Drug

Administration, discussion group leader
• Ken Fuchs, Center for Medical Interoperability
• Christopher Gates, Illuminati Engineering
• Sol Greenspan, US National Science

Foundation
• Tom Haigh, Adventium Labs (ret.), vice- chair

and draft author
• Marijn Heule, University of Texas- Austin
• Warren Hunt, University of Texas- Austin
• James Jacobson, Siemens Healthcare

Diagnostics

• Michelle Jump, Stryker, discussion group
leader

• Chandu Ketcar, Cigital
• D. Richard Kuhn, US National Institute of

Standards and Technology
• Carl Landwehr, George Washington University,

chair and draft author
• Steve Lipner, Microsoft
• Dan Lyon, Cigital
• Robert Martin, MITRE
• James McDonald, Kestrel Institute
• Michael McNeil, Philips, discussion group

leader
• Steve Myers, Indiana University
• Nathanael Paul, University of South Florida
• Eric Petersen, Welch Allyn
• Stephanie Preston, Battelle
• Robert Seacord, Carnegie Mellon University-

Software Engineering Institute (SEI)/CERT
• Shahid Shah, Netspective
• Tucker Taft, Adacore
• Roshan Thomas, MITRE, discussion group

leader
• Eugene Vasserman, Kansas State University
• Sam Weber, Carnegie Mellon University- SEI/

CERT
• Chuck Weinstock, Carnegie Mellon

University- SEI, discussion group leader

	Table of Contents
	Introduction
	Purpose
	Scope and Applicability
	Definitions

	Procedures
	Elements of the Code, by Category
	Elements intended to avoid/detect/remove specific types of vulnerabilities at the implementation stage (A)
	Elements intended to assure proper use of cryptography (B)
	Elements intended to assure software/firmware provenance and integrity, but not to remove code flaws (C)
	Elements intended to impede attacker analysis or exploitation but not necessarily remove flaws (D)
	Elements intended to enable detection/attribution of attack (E)
	Elements intended to assist in safe degradation of function during an attack (F)
	Elements intended to assist in restoration of function after attack (G)
	Elements intended to support maintenance of operational software without loss of integrity (H)
	Elements intended to support privacy requirements (I)
	Desired characteristics of the building code, for example, standard names use, building code maintenance over time, and scope (X)

	Conclusion
	Acknowledgments

	Appendix A. Research Agenda for Medical Device Software Security
	Assurance cases using the Object Management Group’s Structured Assurance Case Metamodel based tooling
	Minimization of computational power exposed to inputs
	Protection of critical state data
	Risky module identification
	Runtime detection of code tampering via antitamper/anticorruption mitigation techniques
	Security assurance cases using eliminative arguments
	Trusted computing base
	Notations that expose cyber mitigations (such as insulation diagrams)
	Compiler-based integer overflow protection

	Appendix B. List of Participants

	Button 4z:
	IEEE:
	IEEE Computer Society:
	IEEE Cybersecurity Initiative:
	Next Page:
	Page 2: Off
	Page 31: Off
	Page 42: Off
	Page 53: Off
	Page 64: Off
	Page 75: Off
	Page 86: Off
	Page 97: Off
	Page 108: Off
	Page 119: Off
	Page 1210: Off
	Page 1311: Off
	Page 1412: Off
	Page 1513: Off
	Page 1614: Off
	Page 1715: Off
	Page 1816: Off
	Page 1917: Off
	Page 2018: Off
	Page 2119: Off
	Page 2220: Off

	Previous Page:
	Page 2: Off
	Page 31: Off
	Page 42: Off
	Page 53: Off
	Page 64: Off
	Page 75: Off
	Page 86: Off
	Page 97: Off
	Page 108: Off
	Page 119: Off
	Page 1210: Off
	Page 1311: Off
	Page 1412: Off
	Page 1513: Off
	Page 1614: Off
	Page 1715: Off
	Page 1816: Off
	Page 1917: Off
	Page 2018: Off
	Page 2119: Off
	Page 2220: Off
	Page 2321: Off

	IEEE 2:
	IEEE Computer Society 2:
	IEEE Cybersecurity Initiative 2:
	Back to TOC:
	Page 4: Off
	Page 51: Off
	Page 62: Off
	Page 73: Off
	Page 84: Off
	Page 95: Off
	Page 106: Off
	Page 117: Off
	Page 128: Off
	Page 139: Off
	Page 1410: Off
	Page 1511: Off
	Page 1612: Off
	Page 1713: Off
	Page 1814: Off
	Page 1915: Off
	Page 2016: Off
	Page 2117: Off
	Page 2218: Off
	Page 2319: Off

