
The Journal of Systems and Software 125 (2017) 354–364

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Software Systems Engineering programmes a capability approach

�

Carl Landwehr a , Jochen Ludewig

b , Robert Meersman

c , David Lorge Parnas d , ∗,
Peretz Shoval e , Yair Wand

f , David Weiss g , Elaine Weyuker h

a Cyber Security Policy and Research Institute, George Washington University, Washington, DC, USA
b Institut für Software, Universität Stuttgart, Stuttgart, Germany
c Institut für Informationssysteme und Computer Medien (IICM), Fakultät für Informatik, TU Graz, Graz, Austria
d Middle Road Software, Ottawa, Ontario, Canada
e Ben-Gurion University, Be’er-Sheva, Israel
f Sauder School of Business, University of British Columbia, Vancouver, BC, Canada
g Iowa State University, Ames Iowa, USA
h Mälardalen University, Västerås, Sweden and University of Central Florida, Orlando, FL USA

a r t i c l e i n f o

Article history:

Received 24 May 2016

Revised 22 November 2016

Accepted 19 December 2016

Available online 23 December 2016

Keywords:

Engineering

Education

Software education

Information systems

Software design

Software development

Software documentation

a b s t r a c t

This paper discusses third-level educational programmes that are intended to prepare their graduates for

a career building systems in which software plays a major role. Such programmes are modelled on tradi-

tional Engineering programmes but have been tailored to applications that depend heavily on software.

Rather than describe knowledge that should be taught, we describe capabilities that students should

acquire in these programmes. The paper begins with some historical observations about the software

development field.

© 2016 Elsevier Inc. All rights reserved.

s

t

i

G

b

p

(

u

p

1. Background

Many universities have created educational programmes to

teach the development of software intensive systems. There is a

great deal of variation among these programmes and a number

of programme names are used. In this paper, we use the term

“Software Systems Engineering” (SSE) to refer to such programmes.

Some types of SSE programmes are discussed in more detail in

Section 5 of this paper to illustrate what we mean by Software

Systems Engineering.

There have been many efforts to define bodies of knowledge

for computing disciplines. A list of some of these efforts can be

found in The Joint Task Force for Computing Curricula (2005).

Some (e.g., Parnas, 1998 ; Lutz et al., 2014 ; Ardis et al., 2015) de-
� Work on this paper began while the authors served on a committee advising

Israel’s Council of Higher Education that was chaired by David Parnas. The opinions

presented in this paper are the personal opinions of the authors. All authors made

substantive contributions to the paper; they are listed in alphabetical order. David

Parnas is the corresponding author.
∗ Corresponding author.

E-mail address: parnas@mcmaster.ca (D.L. Parnas).

t

t

i

A

g

http://dx.doi.org/10.1016/j.jss.2016.12.016

0164-1212/© 2016 Elsevier Inc. All rights reserved.
cribe programmes that have been developed by individual institu-

ions. Others, (e.g., Computing Curricula, 2005), compare the bod-

es of knowledge associated with various computing disciplines. In

lass et al. (2004) , there is a comparison of computing disciplines

ased on the research areas associated with each. The SE2004 re-

ort (Lethbridge et al., 2006), (and its updated version SE 2014

 Ardis et al., 2015)), propose knowledge that should be taught in

ndergraduate software oriented programs. They also provide sam-

le courses and curriculum patterns.

This paper takes a complementary approach. Noting that:

• Science programmes present an organized body of knowledge

and teach students how to verify and extend that knowledge.
• Engineering programmes present an organized body of knowl-

edge and teach students how to apply that knowledge when

developing products.

Instead of discussing the knowledge that would be conveyed

o students during their education, this paper focusses on things

hat a software developer must be able to do while develop-

ng and maintaining a product. Like Lethbridge et al. (2006) , and

rdis et al. (2015) , this paper discusses a set of Engineering pro-

rammes in which software development plays a central role; un-

http://dx.doi.org/10.1016/j.jss.2016.12.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.12.016&domain=pdf
mailto:parnas@mcmaster.ca
http://dx.doi.org/10.1016/j.jss.2016.12.016

C. Landwehr et al. / The Journal of Systems and Software 125 (2017) 354–364 355

l

p

o

c

i

a

c

p

o

d

d

a

t

f

l

t

u

2

“

e

s

s

N

m

c

w

p

n

g

“

p

a

c

2

B

S

r

t

p

N

w

p

p

g

w

o

m

2

M

n

t

m

n

a

t

3

g

m

S

C
ike Lethbridge et al. (2006), and Ardis et al. (2015) , it does not

rescribe courses or curricula. Rather than describing knowledge

r research areas, we propose a body of capabilities . Many different

urricula could help students to acquire the capabilities described

n this paper.

Because software is a rapidly changing field, we expect that the

ssociated “body of knowledge” will continue to grow quickly and

urricula will need to be revised frequently. In contrast, the ca-

abilities discussed in this paper are fundamental. We base them

n observations that were made when the profession of software

evelopment was first identified (Brooks, 1995 ; Buxton and Ran-

ell, 1969 ; Naur and Randell, 1968). They were needed then, they

re needed now, and we expect them to be needed in the far fu-

ure.

We do not believe that the capability approach is a replacement

or “Body of Knowledge” or Curriculum proposals. We believe that

ooking at capabilities as this paper does, provides a perspective

hat will help institutions to develop, compare, and update curric-

la.

• Section 2 of this paper reviews discussions that took place

when the term “Software Engineering” and similar terms were

first introduced.
• Section 3 discusses some capabilities that Software Systems En-

gineers need.
• Section 4 discusses the role of projects in Software Systems En-

gineering education.
• Section 5 describes a few of the many distinct disciplines that

fall under the rubric of Software Systems Engineering.
• Section 6 discusses how to use this paper when designing or

revising a curriculum.
• An appendix provides a more detailed discussion of the most

important learning outcomes for Information Systems Engineer-

ing.

. Searching for a definition of “Software systems engineering”

In the 1960s, some computer scientists began to use the phrase

Software Engineering”1 without providing a clear definition. They

xpressed the hope that software developers would learn to con-

truct their products with the discipline and professionalism as-

ociated with professional engineers (Buxton and Randell, 1969 ;

aur and Randell, 1968).

When the term “Software Engineering” was first introduced,

any asked, “How is that different from programming?” More re-

ently, when post-secondary “Software Engineering” programmes

ere introduced, some asked, “How is that different from Com-

uter Science?” Some who asked these questions questioned the

eed for a new term; others wanted to know what, beyond pro-

ramming and computer science, would be taught to students of

software engineering”. In the discussion that followed, two sim-

le, but consequential, answers emerged. Although both definitions

re old, they have withstood the test of time, are consistent with

urrent usage, and remain relevant today

.1. Brian Randell’s answer

One of the best answers to the question was provided by Prof.

rian Randell, one of the organizers of the first two international

oftware Engineering conferences and co-author of two frequently

eferenced reports on those meetings (Buxton and Randell, 1969 ;
1 Historically, the term “Software Engineering” was used. However, we believe

hat what is said in this section applies to all Software Systems Engineering disci-

lines.

w

c

aur and Randell, 1968). In private discussions, he described Soft-

are Engineering as “multi -person development of multi- version

rograms”. This pithy phrase implies everything that differentiates

rofessional software engineering from programming. Software en-

ineers must be able to work in teams to produce programs that

ill be used, and revised, by people other than the original devel-

pers. Although performing that job requires programming skills,

any other capabilities are required as well.

.2. Fred Brooks’ answer

The diagram below appears In Fred Brooks’ classic book, “The

ythical Man-Month” (Brooks, 1995). The vertical dimension de-

otes “productizing” and the horizontal one “integration”.

Fred Brooks’ explanation of why software engineering is more

han programming. 2

• By testing, documenting, and preparing a program for use and

maintenance by other people, one transforms that program to

a “programming product”.
• By integrating a program with other, separately written, pro-

grams, one moves from a program to what Brooks called “a

programming system”.
• Doing both of these results in a “programming systems prod-

uct”. Going from a program to a programming systems product

results in a massive increase in cost and effort.

Brooks’ formulation, like Randell’s, makes it clear that there is

uch more than programming skill required of a software engi-

eer. Software engineers must master programming, but they must

lso be able to integrate separately written programs and “produc-

ize” the result.

. What should Software Systems Engineers be prepared to do?

The decision to create Software Systems Engineering pro-

rammes that are distinct from “Computer Science” programmes

akes these old questions relevant today. We have to ask how

oftware Systems Engineering programmes should differ from

omputer Science Programmes and what criteria should be applied

hen evaluating them.
2 Figure redrawn from (Brooks, 1995). The “x3” annotation, denotes a 3-fold in-

rease in effort.

356 C. Landwehr et al. / The Journal of Systems and Software 125 (2017) 354–364

3

p

p

e

m

d

w

n

r

c

v

e

m

h

b

p

c

i

u

e

b

c

s

t

t

w

d

a

t

o

t

r

t

o

a

h

p

e

g

e

3

c

s

t

v

e

o

3 By “formally complete” we mean only that the documentation characterizes ac-

ceptable behaviour in all possible situations. Formal completeness should not be

confused with correctness; it does not guarantee that the behaviour identified as

acceptable by the document is actually suitable for the intended use. It is possible

for a Software Systems Engineer to check a document for formal completeness; one

needs stakeholders to check for correctness.
4 Modules may comprise several smaller modules (submodules).
This section lists some activities that are implied by the an-

swers offered by both Randell and Brooks. We believe that Soft-

ware Systems Engineering programmes should teach the funda-

mental principles and procedures that will help their graduates

to perform these tasks well. Rather than prescribe the knowledge

content of a Software Systems Engineering programme, we de-

scribe a core set of capabilities that should be acquired in those

programmes.

This paper deliberately avoids naming any particular tech-

niques, technologies and “methodologies”. For example, although

we suggest that graduates should have learned how to create and

use models, we do not mention any modelling languages, methods,

or tools. Further, the choice of how, and when, to teach modelling

is left to the individual institution.

We have five reasons for not naming specific tools or languages

in this paper:

• Software development technologies change rapidly and quickly

become outdated. A post-secondary education should prepare

students to learn new technologies as they are developed; grad-

uates should also be prepared to learn an old technology if

asked to work on a product that was originally developed using

tools that are no longer in common use.
• Many current technologies are commercial products whose us-

age and effectiveness are exaggerated by advocates who often

act more like sales representatives than professional scientists

or engineers.
• Some departments will have favourite tools or languages that

fit their view of how things should be done; they should be

allowed to use those tools in their teaching.
• The development of a new method or tool should not obsolete

the education of an engineer who was educated before it ap-

peared.
• It is more important that graduates of a Software Systems En-

gineering programme are able to use the available evidence to

evaluate new methods and technologies, and then choose the

approach that is best for their present project, than that they

have learned about any particular tool or notation.

However, one cannot teach engineering methods and concepts

without giving students a chance to apply those approaches while

they can benefit from guidance by their instructors. Consequently,

during their education, students will have to learn to use some of

the current tools. To help students to distinguish between funda-

mental principles and current technology, it is often useful to sep-

arate the teaching into lectures and laboratory sessions so that

• the lectures teach fundamental concepts and principles, and

• the laboratory sessions provide experience applying the lecture

material using reasonably current tools and notations.

The authors are quite aware of current developments in Soft-

ware Systems Engineering programmes and the explosion of topics

and terminology that has resulted from the increased level of ac-

tivity in our field. It would be impossible for us to discuss all of

the issues and concepts that have been discussed in the academic

and industrial literature. We have chosen instead to focus on issues

and capabilities that we consider to be fundamental and hence a

kernel. Each institution can build on this kernel in its own way.

We expect that the notations and tools that are popular today

will be replaced by newer tools and approaches. In contrast, we

believe that the capabilities discussed below will remain important

throughout a graduate’s career.

The following sections discuss specific capabilities.
.1. Communicate precisely between developers and stakeholders

For any product development to be successful, the needs and

references of the stakeholders (e.g., purchasers, clients, investors,

resent and future users) must be communicated to the develop-

rs. It is best if these requirements can be determined and docu-

ented early in the development process.

Understanding user needs before a system is available is very

ifficult. Often the clients do not know what is required; even

hen they know, user representatives may not be able to commu-

icate those requirements clearly. Consequently, their statement of

equirements will change during the project and will continue to

hange throughout the period in which the system is used. De-

elopers must be prepared to respond to the changes that (in-

vitably) occur both during system development and after deploy-

ent. Nonetheless, we believe that there are many advantages to

aving the best possible description of the client’s requirements

efore code writing begins. Of course, the developers must be pre-

ared to revise that description to keep it consistent with the

lients’ needs as the product develops and understanding grows.

As in other engineering fields, determining and document-

ng requirements requires extensive interaction between potential

sers (or their representatives) and representatives of the develop-

rs; it may require modelling (see Section 3.8 of this paper) and

uilding prototypes (simulators or mockups) that potential clients

an use and critique. The goal of these effort s by developers and

takeholders should be to produce requirements documentation

hat is precise, readable, and demonstrably formally complete 3 .

Often, the stakeholders’ representatives will not have been

rained in requirements specification. In such situations, the Soft-

are Systems Engineers will have to take the lead by producing a

raft statement of requirements that can be reviewed, corrected,

nd (eventually) accepted by the purchasers or by user representa-

ives.

After the development is complete, the user-visible properties

f the product must be communicated to the end-users so that

hey can make effective use of the system. This, too, is part of the

esponsibility of a Software Systems Engineer. While professional

echnical writers can help in the preparation of user documents,

nly the developers have the requisite system knowledge.

In short, Software Systems Engineers should learn how to elicit

nd document requirements and how to describe the visible be-

aviour of a completed product; they should understand the im-

ortance of keeping these documents up to date as user prefer-

nces and system behaviour evolve; they should know how to or-

anize requirements documentation so that updating is relatively

asy.

.2. Communicate precisely among developers

When groups cooperate on a project of any type, the ability to

ommunicate precisely about many things (e.g., goals, schedule, re-

ources, standards, and interfaces) is essential to their success.

Most software development projects are organized as a set of

asks; the ultimate goal of most of those tasks is to design, de-

elop, test and deploy groups of programs that we call modules ;

ach module becomes the responsibility of a group of developers 4

r an individual developer. Those developers must know both:

C. Landwehr et al. / The Journal of Systems and Software 125 (2017) 354–364 357

fi

d

e

l

p

s

T

t

t

f

v

w

t

t

s

c

s

(

s

f

3

t

W

g

t

t

t

t

s

g

a

t

c

n

t

s

u

3

n

d

a

t

o

s

o

a

p

t

s

t

d

3

t

v

i

e

i

c

f

l

m

3

p

t

r

o

t

h

• how their module is required to behave, and

• the behaviour that they can expect of other modules.

If the required behaviour is not clearly and completely speci-

ed, the product will be plagued by missing capabilities, redun-

ant capabilities, and incompatible programs. It is a basic prop-

rty of digital technology that very small misunderstandings can

ead to major failures. Describing module interfaces precisely has

roven particularly difficult for software projects because the de-

criptions must specify the behaviour of the modules over time.

he tools used in traditional Engineering to do this (e.g. differen-

ial equations) are not helpful with software because the functions

hat characterize software behaviour are not differentiable.

Understanding the nature of an interface is the key to success-

ul inter-developer communication. Many problems in software de-

elopment arise because developers have an overly simple view of

hat constitutes an interface. Below are examples of distinctions

hat are often overlooked in CS courses. If graduates understand

hese distinctions, and learn how to apply them , they will be better

oftware developers.

• The assumptions that the developers of a module, A, are al-

lowed to make about another module, B, constitute B’s specified

interface to A.
• The assumptions that the developers of a module, A, actually

make about another module, B, constitute B’s actual interface to

A.
• B’s actual or specified interface to A may be different from B’s

actual or specified interface to other modules.
• A’s actual or specified interface to B is not generally the same

as B’s actual or specified interface to A.
• In practice, an actual interface may differ from the correspond-

ing specified interface.

• If B’s actual interface to A includes assumptions that are not

implied by the specified interface, A may fail even if B func-

tions as described in the specified interface.
• If B’s actual interface to A is a proper subset of the assump-

tions allowed by the specified interface, A won’t fail as a

result but may be less efficient than it could be.

Because even small deviations from an intended interface can

ause major changes in software behaviour, interface documents

hould be unambiguous and cover all possible usage sequences

i.e., be formally complete).

In short, Software Systems Engineers should learn how to de-

ign module interfaces and how to read and write module inter-

ace documentation.

.3. Design human-computer interfaces

Most Software Systems Engineers will be working on systems

hat present information to, and receive information from, people.

hen designing human-computer interfaces, Software Systems En-

ineers should learn to consider both the nature of the information

hat will be exchanged and the capabilities and habits of the in-

ended users.

Software Systems Engineers should also learn to distinguish be-

ween ease-of-learning and ease-of-use so that they can design in-

erfaces for both beginning and experienced users.

Designing human-computer interfaces is a multidisciplinary

ubject. It combines knowledge from fields such as psychology, en-

ineering biomechanics, industrial design, and graphic design, with

n understanding of software design and the characteristics of in-

erface devices. There are software packages designed to ease the

onstruction of user interface software; a Software Systems Engi-

eer should understand what such products can do and know how

o choose the one that is best for their project.
In short, Software Systems Engineers should know how to de-

ign human-computer interfaces that are easy to use and improve

sers’ productivity.

.4. Design and maintain multi-version software

Successful software products evolve but the older versions don’t

ecessarily disappear; often, the older versions must remain in the

evelopment organization’s product line. Knowing how to design

nd maintain software product lines is essential for Software Sys-

ems Engineers.

Designing products for ease of change requires approaches that

ften seem counterintuitive to programmers. These approaches

ometimes lengthen the development time for the first version in

rder to reduce both the time required to develop later versions

nd the cost of maintaining several versions simultaneously.

There are several approaches to software design that make a

roduct easier to change. All of them require the developers to

ake the time to think about possible changes during the initial de-

ign. Some of the approaches to making software easier to change

hat can be taught to Software Systems Engineering students are

iscussed in more detail below.

.4.1. Identify and separate changeable concerns

Software revisions are easier if the software is designed so that

he most likely changes are localized in modules that can be re-

ised without affecting other modules. Software Systems Engineer-

ng students should learn how to:

• study the product’s requirements to identify the aspects that

are most likely to change,
• study the support system and hardware to identify aspects that

are likely to change,
• study the software design decisions (algorithms, module inter-

faces, and data structures) to identify the ones that are most

likely to require change,
• organize software as a set of modules that can be developed,

and changed, independently because each module has complete

responsibility for a changeable aspect of the system, and

• design module interfaces that abstract from the changeable as-

pects of the module so that the interface is not likely to change

even if the module implementation is revised.

Experience has shown that, even if unanticipated changes are

ventually required, software designed for ease of change is eas-

er to maintain than software designed without concern for future

hanges.

In short, Software Systems Engineers should learn to prepare

or change by thinking about what is likely to change and encapsu-

ating the most changeable aspects of their work in well-specified

odules.

.4.2. Document to ease revision

When change is needed, the code may be revised by peo-

le who did not write it. Even if the original programmers make

he revisions, they may no longer remember the details and the

easons for the decisions that they made. Consequently, devel-

pers should leave a detailed and precise design description for

he maintainers. Software Systems Engineering students must learn

ow to:

• produce detailed design documentation that can serve as a

“knowledge base” for future developers,
• organize documentation so that information is easy to find,
• organize the documentation so that information that is likely to

change is not repeated, and

358 C. Landwehr et al. / The Journal of Systems and Software 125 (2017) 354–364

s

a

3

v

v

l

f

fl

a

d

t

a

c

g

S

u

f

w

t

3

i

a

c

o

d

b

t

e

r

t

p

i

b

m

t

s

n

a

a

s

a

r

a

3

d

s

g

5 We use “component ” to denote the replaceable parts of software as distributed.

For example, an update replaces old versions of one or more components with

new versions of those components. Components may include programs from sev-

eral modules and programs from a module may be included in several components.
• maintain all artifacts (both code and documents) in an accurate

and up-to-date state so that the documents can serve as a reli-

able source of information for future developers.

In short, Software Systems Engineers should learn how to pro-

duce and maintain orderly design records to help future maintain-

ers.

3.4.3. Use parameterization

A powerful tool for making software easier to change (see 3.4.1)

is parameterization. Software Systems Engineers should learn how

to spot opportunities to parameterize their designs and use the pa-

rameters in both documents and code. This will make their de-

sign more generic and avoid distributing constants that are likely

to change throughout the product.

3.4.4. Design software that can be moved to many platforms

With the wide variety of platforms available today, it is im-

portant that software developers be able to develop and maintain

products that can be used on several of them. Designing software

to be portable is a special case of designing for change (3.4.1) but

there are special issues that a software developer must be able to

resolve.

Porting software to new platforms can lead to conflicting re-

quirements and difficult design decisions for the developer. For ex-

ample:

• Users of a platform may prefer an application to have the same

“look and feel” as other applications on that platform.
• Users of a software product may want it to have the same “look

and feel” on all of their platforms.
• One platform may provide services that make it easy to offer a

capability that would be difficult to offer on some other plat-

forms.
• The mechanisms available for transferring data between appli-

cations may differ between platforms.
• Error handling conventions can differ between platforms.

Industry has had mixed success in solving these problems. Of-

ten product lines have features that are available on some of the

platforms but not available on others. This can confuse and annoy

users.

In short, Software Systems Engineers should be aware of the

problems of building multi-platform products and understand how

to organize software so that the platform-specific modules are

clearly identified.

3.4.5. Design software that is easily extended or contracted

Users have come to expect software products that are easily ex-

tended when new capabilities are needed. They would like the ex-

tended product to be compatible with the previous version so that:

• they can continue to use the old capabilities without changing

their habits or updating other programs, and

• the extended program can work with data created by the pre-

vious version.

In other situations, there may be a need for a product with re-

duced capability. For example, a software company may want to

offer a free version to attract consumer interest or a version that

will run with limited computational resources.

If some products are extensions of others, the cost of maintain-

ing a software product line will be reduced whenever a change can

be effected by revising a shared module.

Extending and contracting software has proven unexpectedly

hard for industry to achieve; often, the “extended” versions are not

true supersets of the smaller ones and the various versions are not

compatible.
In short, Software Systems Engineers should learn how to de-

ign software so that it can more easily be extended or contracted

nd data can be reliably transferred between versions.

.4.6. Design and maintain products that will be offered in many

ersions

Software development organizations must often maintain many

ersions of their software products. It is important that students

earn how to design software to make this as easy as possible. The

act that many versions of a product will be offered should be re-

ected in the structure of the products and their interfaces.

Multi-version products comprise a large set of components 5

nd several versions of each component may exist. It can be very

ifficult to make sure that a particular instance of the product con-

ains the right version of each of its components. Making sure that

ll products have the correct versions of their components is often

alled configuration management.

There are many configuration management tools available to or-

anize the versions of components and assemble working systems.

oftware Systems Engineers should be able to compare these tools,

nderstand what they can, and cannot, do, and pick the right tool

or their project.

In short, students should be taught the basic principles of soft-

are configuration management and provided with an opportunity

o apply those principles using at least one of the tools.

.5. Design software for reuse

Software reuse is like good parenting; everyone is in favour of

t, but it is often very difficult. Unless the software was designed

nd documented with future reuse in mind, it may be more diffi-

ult to reuse a module than to develop a new one. Even when an

rganization has code that could be reused in a new project, the

evelopers of that product may not know of its existence or capa-

ilities. Whenever software is being reused, it must be thoroughly

ested in its new environment.

Program code is not the only software artifact that develop-

rs should reuse. Development organizations could also benefit by

eusing documents, and test suites. This too is more easily said

han done. Small changes between versions may subtly invalidate

reviously issued documentation and tests. Older documents may

gnore new features or assume the presence of a feature that has

een replaced. If a characteristic of the older versions has been

entioned in several parts of the documentation, those revising

he document may produce an inconsistent document by changing

ome occurrences but not others. Test suites can be inadequate for

ewly added features or can falsely indicate a failure because of

 deliberate change. It takes careful structuring of documentation

nd test suites to make reuse easier.

In short, Software Systems Engineers should learn how to de-

ign and document software in ways that make the code and other

rtifacts easier to reuse; they should also learn how to organize

epositories for the potentially reusable artifacts so that reusable

ssets can more easily be found when needed.

.6. Ensure that software products meet quality standards

The fact that software is written for use by people who did not

evelop it and do not understand its structure, adds to the respon-

ibilities of those who develop the software. When we write a pro-

ram for our own use, we are well equipped to detect, understand,

C. Landwehr et al. / The Journal of Systems and Software 125 (2017) 354–364 359

a

o

C

w

o

s

t

i

p

a

a

m

h

k

3

t

w

i

b

w

w

a

s

e

m

a

i

s

c

3

a

A

i

p

t

r

t

c

p

i

i

d

a

i

3

p

r

o

c

s

m

t

t

r

t

t

m

o

w

s

d

w

t

a

E

s

e

3

b

b

p

(

E

p

u

m

m

p

g

t

E

t

t

i

t

t

k

W

s

nd deal with any features that are difficult to use or failures that

ccur during use; most other users will not have that capability.

onsequently, usability and reliability are more important for soft-

are products, than for programs intended for the programmers’

wn use.

Software Systems Engineers must understand that quality as-

urance is their professional obligation and that they should refuse

o release products that have not been shown to be fit for their

ntended use. They should know how to follow processes that im-

rove software quality and be proficient in methods that help to

ssure that the quality of a product is acceptable such as:

• reviewing software structure for conformance to accepted de-

sign principles,
• reviewing documentation for completeness, accuracy, and us-

ability,
• testing programs — to find and eliminate faults, as well as to

estimate reliability 6 ,
• “divide and conquer” inspection of large programming systems,

and

• formal verification of critical small programs.

In short, Software Systems Engineers should be taught that they

re responsible for the quality of the products that they release,

ust know how to apply basic methods of quality assurance, know

ow to design software to make inspection and testing easier, and

now how to inspect and test software products.

.7. Develop secure software

Today’s software is used over networks that can be used to at-

ack user’s systems. Even software that is not connected to a net-

ork is often used by many users; some of those users may try to

nterfere with others. Even single-user software can, if it has not

een carefully designed, be tricked into behaving in unacceptable

ays and inflicting damage on its users.

A Software Systems Engineer should know how to design soft-

are that does not allow one user to either interfere with, or gain

ccess to, the data of others. They should also know how to make

ure that software is robust and can handle maliciously crafted (or

rroneous) inputs properly.

Software Systems Engineers must understand that security

ust be a design concern from the start; many years of research

nd experience have made it clear that security is not achievable

f it is an afterthought.

In short, Software Systems Engineers should understand the ba-

ic principles of designing programming systems that are intrinsi-

ally secure.

.8. Create and use models in system development

The creation and use of models (physical, mathematical, and di-

grammatic) plays an essential role in all engineering disciplines.

 model is a simplified version or description of a product that

s intended to be used for predicting the behaviour of the actual

roduct. Great care must go into creating the model to make sure

hat it is suitable for its intended purpose. Because of the inaccu-

acies in models, even greater care is required when interpreting

he results of a model-based analysis.

Because most models are simpler than the product, they do not

onstitute an accurate description of the product and cannot re-

lace detailed documentation. Conversely, detailed documentation

s not usually well suited for use in modelling.
6 Reliability estimates can be used when deciding whether or not a new product

s ready for release.

w

w

c

g

In short, modelling is quite different from programming and

ocumentation; Software Systems Engineers should be able to cre-

te and analyze a variety of models and use modelling results to

mprove the design of the software systems that they develop.

.9. Specify, predict, analyze and evaluate performance

Because today’s software systems integrate the work of many

eople and are often being used by many people at the same time,

esource utilization can be hard to predict and the response time

f a computer system is often unsatisfactory. Even systems that

ompute correct values every time that they are used, will be con-

idered unsatisfactory if they are too slow or require too much

emory.

Software Systems Engineers are responsible for insuring that

heir products perform adequately. They must be able to specify

he required performance of a system. Specification of performance

equirements requires a characterization of the expected load on

he system as well as anticipating the expectations of users. Predic-

ion of the performance of a proposed design may require making

odels of both the system and its environment and the application

f queueing theory and simulation techniques.

If a system is found to have inadequate performance, the Soft-

are Systems Engineer must be able to analyze the hardware and

oftware to identify the causes of the problems. When a system is

eemed complete by its manufacturer, Software Systems Engineers

ho work for the customers will need to carry out performance

ests before accepting it.

In short, producing systems that perform adequately, and evalu-

ting the performance of such systems, requires Software Systems

ngineers to be competent in a variety of areas, many of which,

uch as queueing theory, were developed outside of Computer Sci-

nce.

.10. Be disciplined in development and maintenance

“The phrase ‘software engineering’ was deliberately chosen to

e provocative; it suggested that software manufacture must be

ased on the types of theoretical foundations and practical disci-

lines that characterize the established branches of engineering”

 Naur and Randell, 1968).

If we observe the way that engineers work in fields such as Civil

ngineering, we see that they are required to follow relatively rigid

rocesses when designing, documenting, and checking their prod-

cts. These procedures often include measurements that must be

ade, forms that must be completed, mathematical analyses that

ust be performed, and standards that must be satisfied. Disci-

line is also required when repairing an engineering product. En-

ineers are not born with disciplined work habits; they have to be

aught.

Analogous procedures need to be taught to Software Systems

ngineers. Students should be given numerous opportunities (in

he form of projects and exercises) to practice the procedures that

hey have been taught so that they can gain a deeper understand-

ng of the principles behind procedures and develop good habits.

Software maintenance requires at least as much discipline as

he original development. Software Systems Engineers also need

o be taught how to modify other people’s programs in ways that

eep them consistent with the original structure of the software.

hen changes do not conform to the original design concepts,

oftware starts to age and becomes hard to maintain.

Numerous tools intended to help the development team to

ork in a careful and disciplined way are on the market. A Soft-

are Systems Engineer must understand what these tools can (and

annot) do and know how to choose and use the best tool for a

iven project.

360 C. Landwehr et al. / The Journal of Systems and Software 125 (2017) 354–364

a

n

t

s

t

s

c

c

g

4

e

m
To improve the discipline of their software development teams,

many companies specify a development process, i.e., a sequence of

steps that their development teams must follow and a set of work

products that must be produced.

Some companies choose a process that has been developed and

promulgated by external experts. Those experts may be either aca-

demics or commercial consulting firms; many of their processes

are publicized and supported by books and articles. Other compa-

nies invest time and effort to develop their own process and pro-

duce internal documents that describe it 7 . Even when developers

say that they have followed a specific process, discussions may re-

veal that they have actually deviated from that process by skipping

steps, modifying some work-products, or adding extra work prod-

ucts.

Many types of processes (e.g., continuous integration, agile de-

velopment and test-driven development) have been proposed but

none is appropriate for every situation. Software Systems Engineers

need to be familiar with several processes, understand their in-

tended purpose, and know the strengths and weaknesses of each.

In short, Software Systems Engineers should be taught to work

with care and discipline both when they are developing a new

product and when they are modifying an old one.

3.11. Use metrics in system development

Because of the complexity of engineering products, they are of-

ten evaluated, explained, and sold to others on the basis of “fig-

ures of merit” or “metrics”. Many metrics have been proposed for

software; experience has shown that many of these metrics are

misleading in that a “better” value does not always mean a better

product. Software Systems Engineers should learn what metrics are

useful and the main considerations in choosing, and using, metrics.

In short, Software Systems Engineers should learn about soft-

ware metrics and know how to use them with caution.

3.12. Manage complex projects

Building and installing software requires coordinating the work

of developers, marketers, clients, and users. Coordinating the work

of many people to produce a new system is a complex task that

requires:

• planning and scheduling,
• estimation of cost, time and effort needed for a task,
• progress measurement,
• problem tracking,
• risk management,
• configuration management,
• resource control,
• task assignment,
• forming teams and other organizations (e.g. matrix organiza-

tions),
• choosing and using project management tools,
• leadership.

There are two contrasting views about the relation between

project management and Software Systems Engineering:

• Project management is an important problem for all engineer-

ing disciplines. Project management is often taught by both

Management and Engineering faculties; much of what is taught

is independent of the nature of the product. Consequently, one

can view project management as a discipline that is outside
7 They do this because they believe that their company has characteristics that

make the externally developed processes a poor fit for them.

a

g

o

a

of Software Systems Engineering. Some institutions include a

semester course on project management in their general en-

gineering programme. Others offer project management as an

extension to an engineering degree (extra year) or offer engi-

neering project management at the Masters level for students

who already have an engineering degree.
• Experience suggests that project management is more difficult

in software projects than it is in other engineering projects of

a similar size. Problems arise in software projects that are not

common in other disciplines. Consequently, some believe that

software project management should be an integral part of a

Software Systems Engineering programme.

Several reasons have been advanced for treating project man-

gement differently from the way that it is treated in other engi-

eering disciplines.

• Software project management is made more difficult by the fact

that plans and decisions often have to be made using incom-

plete and insufficient information.

• The lack of complete information is most noticeable for the

important decisions that are made early in the development

process when requirements are not well understood and are

poorly documented.
• Requirements that were stated early in the project are often

revised later.
• During the development, internal interfaces are often in-

completely documented; as a result, much time is spent co-

ordinating groups and adjusting the interface between mod-

ules to make those modules compatible.

• Many software products are new and innovative; consequently,

estimation of cost and benefit is more difficult.
• Often, managers and developers lack experience with a new ap-

proach and cannot accurately predict how well their approach

will work.
• The structure (aka architecture) of the software is often such

that changes in one module may seriously affect the completion

time of others.
• For software products, there is often no clear end to the de-

velopment period; development commonly continues after the

release of the first version.
• Because a software development organization must often main-

tain many versions of its software products, those products are

composed of a large set of components; further, several vari-

ations of each of those components may exist. It can be very

difficult to make sure that a particular version of the product

contains the right version of each component.

In short, whether one considers project management as an in-

egral constituent of Software Systems Engineering, or views it as a

eparate topic, every Software Systems Engineer should understand

he basics of project management. There is a great deal of sub-

tantive material that can be taught in an academic programme. It

an either be taught in courses shared with other Engineering Dis-

iplines or integrated into the Software Systems Engineering pro-

ramme.

. The role of projects in Software Systems Engineering

ducation

Professional educational programmes (e.g., engineering,

edicine, and law), are intended to teach “how to” as well

s “about”. In particular, while engineering programmes teach a

reat deal of science and mathematics, they have an additional

bligation; they must make sure that their students know how to

pply that material when developing products.

C. Landwehr et al. / The Journal of Systems and Software 125 (2017) 354–364 361

p

s

e

c

i

t

t

s

t

u

I

t

p

k

t

c

c

u

a

p

S

i

e

i

v

c

a

(

t

5

g

h

a

b

p

s

b

c

n

f

c

5

t

h

t

a

t

c

t

5

f

o

s

i

t

s

m

u

t

t

o

p

g

5

s

o

g

m

n

i

5

S

i

s

B

s

w
Because the application of scientific knowledge is so im-

ortant in engineering, laboratory exercises and small projects

hould be used throughout the curriculum so that students can

xperience how the theory that they hear about in lectures

an be applied in practice. The importance of these projects

s often underestimated. Projects should not be random “jobs”

hat some “customer” needs; they should be carefully designed

o give students the best possible learning experience. Projects

hould be treated as major constituents of a Software Sys-

ems Engineering programme; all work should be carefully eval-

ated, and detailed feedback should be provided to students.

nstructors must be given sufficient time and resources to do this.

Many engineering programmes use a final-year project (some-

imes called a “capstone project”) to provide students with an op-

ortunity to consolidate what they have been taught by using that

nowledge while they can still get guidance and supervision from

heir teachers. Such projects allow them to see how the many facts,

oncepts and procedures that they have learned in earlier years

an be combined to form a coherent process for producing prod-

cts. In a well designed educational project, all students will play

 few roles 8 , which will give them a broad view of the product

roduction process.

Because “multi-person” is one of the defining characteristics of

oftware Systems Engineering, it is important that, in the projects

n a Software Systems Engineering program, the student experi-

nces:

• organizing a multi-person project as a set of fully specified in-

dividual tasks,
• completing one or more of those individual tasks,
• integrating separately developed modules to produce a high

quality product that can be used by others, and

• experiencing the reaction of others to using their product.

In the capstone project, every team member should participate

n discussions about project management and interfaces.

If the project is properly supervised, the students will have a

aluable learning experience, their completed individual projects

an be used by the faculty to evaluate their ability (i.e., give them

 grade), and the graduates will produce a “portfolio” of products

both code and documents) that can be shown and demonstrated

o prospective employers.

. Variants of Software Systems Engineering

Institutions that offer Software Systems Engineering pro-

rammes must choose between breadth and depth. They will

ave to balance teaching general software development principles

gainst focussing on a particular class of applications. Each has

oth advantages and disadvantages.

• The graduates of a general Software Systems Engineering pro-

gramme will be able to work in many application areas, but

may lack familiarity with particular areas of knowledge that are

relevant for some applications.
• Graduates of a specialized programme will be highly qualified

for work in their own application area but may require extra

education and effort if they switch to a different class of appli-

cations.
• Graduates of a specialized programme are usually well pre-

pared to work with non-software professionals in that appli-

cation area.
8 Possible roles would be requirements analyst, modeller, interface designer, im-

lementor, tester, module user, documenter, manager, etc. A student should be as-

igned several different roles but need not cover all possible roles.

g

w

• Graduates of a general Software Systems Engineering pro-

gramme may not be prepared to discuss technical details with

some of their non-software colleagues.

Whatever choices an institution makes, its programme should

e clearly described so that prospective students and employers

an make informed choices.

Below, we illustrate the breadth of the Software Systems Engi-

eering field by listing a few possible programmes 9 . This list is far

rom complete; it is intended only to illustrate the broad range of

hoices available to educational institutions.

.1. Communications system software engineering (CSSE)

The world has been transformed by the availability of systems

hat are capable of transmitting information over long distances at

igh speeds. Software is at the heart of telephone switching sys-

ems, mobile telephony, the internet, broadcasting systems, local

rea networks, etc. Software Systems Engineers who practice in

his area require knowledge of how communications systems work,

ommunication protocols, network interfaces, and applied informa-

ion theory.

.2. Information Systems Engineering (ISE)

Modern organizations depend on the rapid availability of in-

ormation about their environment, employees, business processes,

ngoing operations, and customers. They need systems that can

upport their work by finding, filtering, and presenting the right

nformation to an employee, manager, or customer at the right

ime.

Software and data bases are critical technologies in building

ystems that satisfy an organization’s need for information. Infor-

ation systems engineering programmes should equip their grad-

ates with methods, knowledge, and skills that will enable them

o develop computer-based information systems that are tailored

o the organizations they serve.

Information Systems Engineers require more understanding of

rganizational structures, behaviour, decision making, and business

rocesses, than other types of Software Systems Engineers.

The appendix discusses learning requirements for ISE pro-

rammes in more detail.

.3. Mechatronics Engineering (Software intensive engineering)

Software is now replacing analog technologies in many clas-

ical engineering applications. Software is critical in the control

f manufacturing systems, transportation systems, robotics, navi-

ation systems, aircraft design, weapons systems, etc.

Software Systems Engineers who will practice in these areas

ay require an understanding of many topics that classical engi-

eers study, e.g., physics, differential and integral calculus, chem-

stry, thermodynamics, and materials science.

.4. Software Engineering

“Software Engineering” (SE) usually denotes a broad Software

ystems Engineering programme that is intended to be application

ndependent. SE programmes teach students about many types of

oftware rather than specializing in a particular class of products.

ecause there are no application-specific requirements, it is pos-

ible to allow students to go more deeply in specific areas than

ould be possible in an application-specific Software Systems En-

ineering programme. Some possible areas for additional depth

ould be:
9 The programmes are listed in alphabetical order.

362 C. Landwehr et al. / The Journal of Systems and Software 125 (2017) 354–364

w

p

S

t

n

“

t

m

p

s

e

c

A

E

t

p

i

c

p

f

A

o

c

fi

b

o

t

B

o

u

i

m

h

s

m

o

l

s

a

t

10 Software engineering is an exception because it is not specialized for a particu-

lar application domain.
• Computer science topics such as graphics, robotics, or search

algorithms,
• Software Systems Engineering topics such as quality assurance,

security, interface design, or documentation,
• Mathematics topics such as graph theory, logic, queueing the-

ory, differential equations, or statistics.

5.5. System-Software Engineering

All modern software is built using “system software” such as

operating systems, device drivers, network interfaces, compilers,

data base systems, and file systems. These products are often hard-

ware dependent and have especially stringent reliability, security,

speed and resource utilization requirements because all other soft-

ware in the system depends on system software functioning cor-

rectly and efficiently. System-software engineers specialize in this

type of product and will require specialized knowledge in concur-

rency, run-time error handling, resource allocation, system secu-

rity, and hardware/software interfaces.

6. Curriculum design

Because there are many useful variants of Software Systems En-

gineering, we suggest that institutions carefully discuss which of

the variants described in Section 5 are both suitable for their stu-

dents and match the strengths of their faculty members. There are

many useful variants and it is not desirable to have all institutions

offering the same ones. Each variant should be clearly labelled and

described so that potential students can make an informed choice.

Believing that there are many valid ways to teach students who

want to be Software Systems Engineers, and many ways to or-

ganize the material into courses, we suggest that the capabilities

listed in Section 3 of this paper be used as a checklist when de-

signing or revising a curriculum. Institutions should look at each

of the capabilities listed and ask, “How will our students learn to

do that?”

Many methods have been proposed for performing each of the

tasks mentioned in this paper; curriculum designers will have to

decide which methods to teach. We expect the methods to evolve

as the field develops.

There are also many ways to teach each method. Further, some

methods can be introduced or mentioned in courses but students

can best obtain experience in using them when they are on the

job. Curriculum designers must think carefully about how best to

use the limited time available to them.

This paper focuses on those aspects of Software Systems Engi-

neering that differentiate it from Computer Science and program-

ming. We have emphasized the most basic (core) capabilities. Ob-

viously, the relevant aspects of Computer Science and program-

ming and some current issues must also be included in these pro-

grammes. Students need both the basic capabilities we have de-

scribed and the ability to “hit the ground running” when they en-

ter industry.

Each institution will have to decide how it will help its stu-

dents to obtain the necessary capabilities, how it will package the

concepts and techniques into courses and projects, and how much

attention each capability will get in their programmes.

7. Summary

Brian Randell, Fred Brooks, and others clearly identified the key

differences between Computer Science, a research field, and Soft-

ware Systems Engineering, a class of professions. Unfortunately, the

(more than) four decades that have passed since then, have not

seen enough progress in the professionalism and discipline of soft-
are developers. There is a great need for programmes that pre-

are people for a profession as a Software Systems Engineer.

It is important that programmes that are identified as Software

ystems Engineering programmes help their students to acquire

he capabilities discussed in Section 3 of this paper.

Finally, Software Systems Engineering programmes should

ever be viewed as extended Computer Science programmes or as

advanced programming” programmes. Professional software sys-

em development is much more than programming and requires

any capabilities that are not usually taught in Computer Science

rogrammes. Further, some parts of Computer Science are not es-

ential for Software Systems Engineers; curriculum designers must

xercise judgement about teaching material not included in the

ore that we have outlined.

ppendix. Learning requirements for Information Systems

ngineering

For each of the variants of Software Systems Engineering, other

han Software Engineering 10 , it is necessary to formulate additional

rogramme requirements that are specific to that (more special-

zed) discipline. Because several of the authors of this paper spe-

ialize in Information Systems Engineering (ISE) programs, we have

repared a list of capabilities that we consider especially important

or information systems engineers.

. Structure and manage organizations

Information systems engineers should have an understanding of

rganizational structures, organizational behaviour, business pro-

esses, decision making, human resource management, accounting,

nance, marketing, operations and logistics management.

Without an understanding of how an organization works, possi-

le alternative organizational structures, and the information needs

f individuals in the organization, ISE graduates will find it difficult

o design effective information systems.

. Analyze the information needs of organizations

Information Systems Engineers must be able to understand an

rganization’s need for information technology and systems, eval-

ate alternative IT solutions, and determine the best approach. An

mportant tool for analyzing an organization is “business process

odelling”. Business process modelling helps the ISE to understand

ow the organization operates, and then to identify its information

ystems needs.

The analyst must be able to:

• create models of an organization, often in the form of graphs,

in which the elements are subdivisions or steps in the organi-

zation’s business processes,
• model the behaviour of the organization’s subdivisions, or steps

in its processes, using input/output relations, and

• derive the behaviour of the model.

Many types of organizational charts and associated analytical

ethods can be useful to information systems engineers through-

ut their careers. There are many tools designed to help an ana-

yst to create and use such charts. An Information System Engineer

hould understand the assumptions underlying each tool and be

ble to select the best tool(s) for a project.

In short, system problems arise in studying both the organiza-

ions that use information systems and the information systems

C. Landwehr et al. / The Journal of Systems and Software 125 (2017) 354–364 363

t

o

C

i

a

T

a

w

i

fi

t

c

g

s

“

b

b

s

m

D

q

v

d

i

m

p

k

t

a

t

E

t

m

o

o

m

s

r

i

p

F

g

t

p

d

d

c

R

A

B

B

C

G

L

L

N

P

T
hemselves. Information systems engineers should learn a variety

f methods for solving these problems.

. Analyze and organize large amounts of data

Modern organizations have access to vast amounts of data; the

ndividuals who make decisions for the organization are often un-

ble to process the raw data to get the information that they need.

oday’s organizations use information systems to “mine” the avail-

ble data and build a “web of data” (sometimes called a semantic

eb) that can provide the organization with the information that

t needs to operate efficiently.

Two basic approaches to dealing with large amounts of data are

ltering and aggregation. When filtering, data considered irrelevant

o the person receiving the information are eliminated. Aggregating

omputes functions of the data items to provide summaries that

ive the recipients more easily used information.

The classic problem of exploiting an organization’s data re-

ources has recently become a popular research field known as

Big Data”. The data can come from many sources and may not

e consistent. It is important for Information systems engineers to

e able to apply the work being done in this area.

In short, information systems engineers should be able to use

uch techniques as filtering and aggregating when designing infor-

ation systems for their customers.

. Recording the provenance of information and ascertaining its

uality

The information available to organizations comes from a broad

ariety of sources of varying trustworthiness; consequently, some

ata must be treated as lower quality 11 than other data. Further,

nformation from different sources may not have been defined or

easured in the same way. Finally, information obtained in the

ast may no longer be valid when it is used.

In short, information systems engineers should know how to

eep track of the sources of the information that they process, how

o assess the quality of information in their data bases and inputs,

nd how to deal with information that is not completely trustwor-

hy.

. Analyze risk exposure and use scientific decision making methods

Many advanced organizations make decisions based on quan-

itative models that provide an analytical approach to decision

aking and problem solving. These include operations research,

ptimization, and mathematical methods of risk analysis. An

rganization’s information systems may be expected to apply such

ethods in order to help managers to make decisions. Information

ystems engineers should have an understanding of quantitative,

ule-based, and other decision making procedures so that they can

ncorporate them in the systems they build.
11 Lower quality data is data that is less reliable or less accurate than other data.
In short, an information systems engineer should be able to ap-

ly “management science”.

. Manage IT systems in multidivisional organizations

Large organizations are often organized as a set of smaller or-

anizations (divisions) that have a certain amount of autonomy. In

he area of Information Technology this can result in numerous

roblems; some examples are:

• Duplication : Several divisions may build systems that perform

the same function.
• Incompatibility : It may be difficult for a system built within one

division to exchange data with systems built by other divisions.
• Inconsistent user interfaces : Clients and suppliers may find it

hard to deal with differences in the behaviour of IT systems in

different divisions.
• Differing outsourcing policies : One division may perform a

function “in-house” while others give contracts for those func-

tions to external suppliers.
• Inconsistent standards: The IT field has many competing and

overlapping standards. Each division might pick its own stan-

dards with the result that an organization will have conflicting

policies.
• Security issues : One division may release information that an-

other division treats as confidential or withhold information

that another division should be able to access.

In short, Information systems engineers need to learn how to

esign and manage an “enterprise architecture” that allows the in-

ividual divisions and the complete organization to function effi-

iently.

eferences

rdis, M., Budgen, D., Hislop, G.W., Offutt, J., Sebern, M., Visser, W., Nov. 2015. SE

2014: curriculum guidelines for undergraduate degree programs in software en-
gineering. Computer 48 (11), 106–109. doi: 10.1109/MC.2015.345 .

rooks, F.P. , 1995. The Mythical Man-Month: Essays on Software Engineering, sec-

ond ed. Addison Wesley, Reading, MA .
uxton, J.N., Randell, B. (Eds.), 1969, Software Engineering Techniques: Report on a

Conference sponsored by the NATO Science Committee, Rome, Italy, 27 to 31
October. Scientific Affairs Division, NATO, Brussels. April 1970, p. 164 .

omputing Curricula, 2005. The Overview Report http://www.acm.org/education/
education/curric _ vols/CC2005-March06Final.pdf .

lass, R.L., Ramesh, V., Vessey, I., June 2004. An analysis of research in computing

disciplines. Comm. ACM 47 (6), 89–94. doi: 10.1145/990680.990686 .
ethbridge, T.C., LeBlanc Jr., R.J., Kelley-Sobel, A.E., Hilburn, T.B., Díaz-Herrera, J.L.,

20 06. SE20 04:recommendations for undergraduate software engineering curric-
ula. IEEE Softw. 23 (6), 19–25. doi: 10.1109/MS.2006.171 , Nov.-Dec. .

utz, M.J., Fernando, N., Vallino, J.R., August 2014. Undergraduate software engineer-
ing. Comm. ACM 57 (8), 52–58. doi: 10.1145/2632361 .

aur, P., Randell, B. (Eds.), 1968, Software Engineering: Report on a Conference

sponsored by the NATO Science Committee, Garmisch, Germany, 7 to 11 Oc-
tober. Scientific Affairs Division, NATO, Brussels. January 1969, p. 231 .

arnas, D.L. , 1998. Software engineering programmes are not computer science pro-
grammes. Ann. Softw. Eng. 6, 19–37 Reprinted (by request) in IEEE Software,

Nov. - Dec. 1999, pp. 19-30 .
he Joint Task Force for Computing Curricula, 2005. ACM Curricula Recommenda-

tions http://www.acm.org/education/curricula-recommendations .

http://dx.doi.org/10.1109/MC.2015.345
http://refhub.elsevier.com/S0164-1212(16)30257-6/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30257-6/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30257-6/sbref0002
http://www.acm.org/education/education/curric_vols/CC2005-March06Final.pdf
http://dx.doi.org/10.1145/990680.990686
http://dx.doi.org/10.1109/MS.2006.171
http://dx.doi.org/10.1145/2632361
http://refhub.elsevier.com/S0164-1212(16)30257-6/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30257-6/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30257-6/sbref0005
http://www.acm.org/education/curricula-recommendations

364 C. Landwehr et al. / The Journal of Systems and Software 125 (2017) 354–364

 been studying software design and development since 1969. He has won more than
mputer Society’s one-time sixtieth anniversary award with the late computer pioneer

 Ph.D. in Electrical Engineering from Carnegie Mellon University and honorary doctorates
ian Switzerland, and the Technische Universität Wien. He is licensed as a Professional

any have been repeatedly republished and are considered classics. He was the founding
ited). A collection of Dr. Parnas’ early papers can be found in: Hoffman, D.M., Weiss, D.M.

sley, 2001, 664 pgs., ISBN 0-201-70,369-6. Dr. Parnas is Professor Emeritus at McMaster
nt of Middle Road Software in Ottawa, Ontario.
Dr David Lorge Parnas taught his first computer design course in 1960 and has
25 awards for his contributions In 2007, Parnas was proud to share the IEEE Co

Professor Maurice Wilkes of Cambridge University. Parnas received his B.S., M.S. and
from the ETH in Zürich, the Catholic University of Louvain, the University of Ital

Engineer in Ontario. Parnas is the author of more than 285 papers and reports. M
director of the McMaster University Software Engineering programme (CEAB accred

(eds.), “Software Fundamentals: Collected Papers by David L. Parnas ”, Addison-We
University in Hamilton Canada, and the University of Limerick Ireland. He is Preside

	Software Systems Engineering programmes a capability approach
	1 Background
	2 Searching for a definition of “Software systems engineering”
	2.1 Brian Randell's answer
	2.2 Fred Brooks’ answer

	3 What should Software Systems Engineers be prepared to do?
	3.1 Communicate precisely between developers and stakeholders
	3.2 Communicate precisely among developers
	3.3 Design human-computer interfaces
	3.4 Design and maintain multi-version software
	3.4.1 Identify and separate changeable concerns
	3.4.2 Document to ease revision
	3.4.3 Use parameterization
	3.4.4 Design software that can be moved to many platforms
	3.4.5 Design software that is easily extended or contracted
	3.4.6 Design and maintain products that will be offered in many versions

	3.5 Design software for reuse
	3.6 Ensure that software products meet quality standards
	3.7 Develop secure software
	3.8 Create and use models in system development
	3.9 Specify, predict, analyze and evaluate performance
	3.10 Be disciplined in development and maintenance
	3.11 Use metrics in system development
	3.12 Manage complex projects

	4 The role of projects in Software Systems Engineering education
	5 Variants of Software Systems Engineering
	5.1 Communications system software engineering (CSSE)
	5.2 Information Systems Engineering (ISE)
	5.3 Mechatronics Engineering (Software intensive engineering)
	5.4 Software Engineering
	5.5 System-Software Engineering

	6 Curriculum design
	7 Summary
	Appendix Learning requirements for Information Systems Engineering
	 A. Structure and manage organizations
	 B. Analyze the information needs of organizations
	 C. Analyze and organize large amounts of data
	 D. Recording the provenance of information and ascertaining its quality
	 E. Analyze risk exposure and use scientific decision making methods
	 F. Manage IT systems in multidivisional organizations

	 References

